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Abstract
It is well known that the discrete cosine transform is a good transform to compress system matrices from magnetic
particle imaging scanners that have a field-free point traveling along a Lissajous trajectory. With help of the
compressed system matrix, the reconstruction of the particle distribution can be accelerated. However, the discrete
cosine transform is a global transform along the spatial dimension of the system matrix. This has the disadvantage
that no multiresolution analysis can be performed due to the loss of the spatial resolution. A typical strategy
to implement a multiresolution analysis is to perform a discrete wavelet transform. Unfortunately, the discrete
wavelet transform is not as sparsifying as the cosine transform for magnetic particle imaging system matrices. By
combing the advantages of both transforms, we develop a strategy that gives rise to a multiresolution analysis with
a similar performance as the discrete cosine transform at the full-resolution level, but with further resolution levels.
We shortly discuss that the developed representation is a good starting point for advanced particle distribution
reconstruction techniques that benefit from a multiresolution analysis.

I. Introduction

Magnetic particle imaging (MPI) is a tracer-based medi-
cal imaging method that is based on the nonlinear mag-
netization characteristics of super-paramagnetic iron ox-
ide nanoparticles (SPIOs) [1]. With different accelerated
and static magnetic fields, the MPI-scanner generates a
small area in which the magnetic fields neutralize each
other. This area is called the field free point (FFP). The
FFP is normally periodically moved on a pre-defined tra-
jectory over the whole field of view (FOV). The change of
magnetization leads to an induced voltage in a receive
coil, where, due to the nonlinear magnetization charac-
teristics of the SPIOs, only SPIOs from the vicinity of the
FFP contribute significantly to the measured signal. For
MPI-scanners with a Lissajous FFP-trajectory, the system
response normally has to be measured. For this, a probe
of SPIOs material is placed on different spatial positions,

and the responses are saved in a so-called system matrix.
With help of the system matrix, the inverse problem of
estimating the SPIOs’ distribution from the voltage sig-
nal can be solved. Unfortunately, the system matrix can
be very dense and huge in size. For a dense matrix, the
reconstruction process can be very slow. In [2], it was
observed that the system matrix of MPI-scanners with a
FFP traveling along a Lissajous-trajectory can be highly
compressed by the discrete cosine transform (DCT) fol-
lowed by thresholding. Recently, a work for matrix com-
pression was published on a non-Euclidean grid, where
the Chebyshev transform becomes orthogonal and the
compression performance is even improved [3]. In this
work, we develop a multiresolution representation [4] for
the system matrix. In particular, we use a combination
of the DCT-II and the discrete wavelet transform (DWT)
for the joint system-matrix compression and multires-
olution reconstruction. We show that the multiresolu-
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Figure 1: Discrete wavelet transform analysis filterbank with
lowpass filter h0(n ) and highpass filter h1(n ).

tion formulation of the system matrix can be helpful to
speed up the reconstruction of SPIOs distribution by a
level-wise system-matrix compression strategy. Also the
new formulation allows for the generation of a first fast
coarse-resolution image reconstruction before a com-
putationally demanding high-resolution reconstruction
is carried out. We expect that the developed formula-
tion is highly promising for system-matrix based MPI
reconstruction connected with more sophisticated re-
construction methods depending on neighborhood re-
lationships [5] or structural prior information [6]. Also
the use of this formulation inside a compressed-sensing
based estimation of the system matrix from only a few
partial calibration scans of the FOV seems highly promis-
ing [7].

II. System matrix compression

The reconstruction problem in MPI can be described as
a linear inverse problem by

S c ≈ f , (1)

where S ∈ CM×N denotes the system matrix, c ∈ RN
+ is

the positive unknown particle distribution, and f ∈CM

contains the frequency components of the voltage signal.
Following the work in [2], the reconstruction problem
in (1) can also be expressed in a transform domain as

ST cT = S T T −1c ≈ f , (2)

where T ∈RN×N describes an invertible transform, ST

is the system matrix in the transform domain, and cT de-
notes the particle distribution in the transform domain.
The idea is to choose T in such a way that the matrix
ST = S T has many small components that become zero
after thresholding. It is well known that the DCT-I and
-II are such kinds of transforms for MPI system matri-
ces. Unfortunately, the DCT is a global transform on the
spatial domain and offers no strategy for a multiresolu-
tion analysis (MRA). One transform to apply a MRA is
the DWT [4], which can also be represented as a linear
transform T as well.
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Figure 2: Discrete wavelet transform synthesis filterbank with
lowpass filter g0(n ) and highpass filter g1(n ).

III. Discrete wavelet transform
Firstly, we describe how the one-dimensional discrete
wavelet transform is related to a multiresolution analy-
sis. Then we give a short overview of boundary handling
for signals with finite support. Finally, we formulate the
DWT as a matrix transform and explain how multidimen-
sional signals can be processed.

III.I. From multiresolution analysis to
discrete wavelet transform

In a multiresolution analysis, an arbitrary signal x (t ) ∈
L2(R) can be approximated from lower to finer resolu-
tion by projecting it onto nested subspaces Vm+1 ⊂Vm ⊂
L2(R). A formal MRA definition can be found in [8].

In wavelet MRA, a space Vm−1 can be written as the
direct sum of Vm and a so-called wavelet space Wm :

Vm−1 =Vm ⊕Wm . (3)

The intersection between Vm ∩Wm = {0} only includes
the zero vector. Roughly speaking, the wavelet space
Wm contains the resolution lost when projecting a signal
from Vm−1 onto the coarser resolution space Vm .

The space Vm is spanned by scaled and time shifted
versions of a functionφ(t ) according to

Vm = span{φmn (t ) =φ(2
−m t −n )|n ∈Z}. (4)

Additionally, the wavelet space Wm is spanned by scaled
and time shifted versions of a mother waveletψ(t ):

Wm = span{ψmn (t ) =ψ(2
−m t −n )|n ∈Z}. (5)

We can express the approximation by Vm = Vm+1 ⊕
Wm+1 and, equivalently, the signal xm (t ) ∈Vm as sum of
the coarser approximated signal xm+1(t ) ∈Vm+1 and the
detail signal ym+1(t ) ∈Wm+1.

Knowing x0(t ) ∈V0, one can compute the correspond-
ing discrete coefficients c0(n ), and from these, it is pos-
sible to calculate all discrete wavelet coefficients dm (n )
recursively. Most times c0(n )≈ xs (n ) = x (nT ) is assumed.
More formally, for a given discrete sequence cm (n ), the
sequences cm+1(`) and dm+1(`) with m , n ,` ∈ Z can be
calculated by a two-channel filterbank with the discrete

10.18416/ijmpi.2018.1811002 c© 2018 Infinite Science Publishing

http://dx.doi.org/10.18416/ijmpi.2018.1811002
http://dx.doi.org/10.18416/ijmpi.2018.1811002


International Journal on Magnetic Particle Imaging 3

analysis filter h0(n ) and h1(n ), where h0(n ) is a lowpass
filter and h1(n ) a highpass filter (see Figure 1):

cm+1(`) =
∑

n∈Z
cm (n )h0(2`−n )

dm+1(`) =
∑

n∈Z
dm (n )h1(2`−n ).

(6)

The discrete synthesis procedure of cm (n ) from
cm+1(`) and dm+1(`), which both have the half sampling
rate of cm (n ), is given by

cm (n ) =
∑

`∈Z
cm+1(`)g0(n −2`)+

∑

`∈Z
dm+1(`)g1(n −2`). (7)

This corresponds to a discrete two-channel synthesis
filterbank with the discrete synthesis filter coefficients
g0(n ) and g1(n ) (see Figure 2). The impulse response
g0(n ) belongs to a lowpass filter and g1(n ) belongs to a
highpass filter.

How such filter coefficients h0(n ), h1(n ),g0(n ), and
g1(n ) are designed is out of the scope of this paper. Most
likely the filters are designed as finite impulse response
(FIR) filters. In particular, in this work, we use the 9/7-
biorthogonal wavelets, which can be found in [4].

III.II. Boundary conditions
The previously introduced DWT is defined for infinitely
long signals x (n )with n ∈Z. However, many signals like
images have finite support. A signal of length N can, for
example, be defined as

x = [x (0), x (1), . . . , x (N −1)]T . (8)

To extend the signal to infinite support, one naive bound-
ary extension is the zero padding solution

xzp(n ) =

¨

x (n ) for n = 0, 1, . . . , N −1

0 elsewhere.
(9)

However, processing xzp(n ) will result in an expansive
transform.

The second option is the periodic extension

xper(n ) = x (mod(n , N )). (10)

This processing allows nonexpansive processing for ar-
bitrary FIR-filter coefficients h0(n ) and h1(n ) as long as
N is an even number. However, the drawback is that
large intensity jumps can be introduced when x (0) and
x (N −1) differ significantly.

If h0(n ) and h1(n ) are linear-phase FIR-filters, a non-
expansive processing can also be achieved by a method
known as symmetric reflection. Compared to the peri-
odic extension, no artificial jumps are introduced, lead-
ing to better compression. It depends on the symmetries
of h0(n ) and h1(n ) and the signal length (even or odd)
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Figure 3: The spatial dimension of a two-dimensional system
matrix is decomposed by the discrete wavelet transform to
form a multiresolution pyramid. In HH both dimensions are
highpass filtered, in LH/HL one of the dimensions is highpass
and the other is lowpass filtered, and in LL, both dimensions
are lowpass filtered. The lowpass filtered subsystem matrix LL
in each stage is transformed via the DCT-II into the sparsity
domain

how the reflection of the signal x (n ) has to be performed
in detail. Such an approach is used in this work. More
information on the treatment of the boundaries can be
found in [9–11]. In this work, the discrete wavelet trans-
form was implemented using biorthogonal wavelets in a
nonexpansive form for arbitrary signal length in lifting
structure [12, 13].

III.III. Mathematical expression of the
DWT

Mathematically, the whole processing of one stage of
the filterbank can be expressed with help of a matrix
W = [W T

h0
, W T

h1
]T with W ∈RN×N , Wh0

∈RdN /2e×N , Wh1
∈

RbN /2c×N , and

x W =W x =

�

x h0

x h1

�

=

�

Wh0

Wh1

�

x , (11)

where x h0
=Wh0

x and x h1
=Wh1

x correspond to the low-
pass and highpass filtered coefficients of the signal x (n ),
respectively. It is not surprising that also the processing
of more than one stage of the one-dimensional DWT can
be expressed as multiplication with a matrix.

III.IV. The multidimensional DWT

For the multidimensional extension of the DWT, typically
one level of the one-dimensional DWT is separately per-
formed along each dimension of the multidimensional
signal. The signal that was filtered with lowpass h0(n )
along all dimensions and downsampled will then form
the basis for the next stage of the n-dimensional DWT
decomposition, and so on. It should be mentioned that
besides the separable wavelet transform considered here,
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also non-separable versions of the wavelet transform ex-
ist, having their own pros and cons, like Curvelets [14]
and Shearlets [15]. However, we exclude such types of
transforms here.

IV. A joint MRA and matrix-
compression approach

Although the DWT has a quite good compression per-
formance for natural images, it is not as sparsifying for
MPI system matrices as the DCT, which was used in [2,
16, 17] with good success. The advantage of the DWT,
however, is that the lowpass filtered and downsampled
coefficients of the system matrix can be interpreted as
a coarser version of the system matrix at the finer level.
This is nothing but the MRA condition of the DWT.

The idea of the method proposed in this article is now
to combine the advantages of the DWT and DCT to de-
velop a method that gives rise to an MRA for both the
MPI system matrices and the particle distribution recon-
struction. We decompose the system matrix level-wise
by the d -dimensional DWT with respect to the dimen-
sionality d ∈ {1,2,3}, followed by a DCT of the lowpass
filtered coefficients of the system matrix in each level.
The calculated system matrix wavelet coefficients then
describe the transfer from the coarse level to a finer level.

In the publications [16], [18], and [19] it was observed
that the system-matrix compression performance de-
pends on the spatial symmetries of the frequency com-
ponents. Furthermore, in [3] it was observed that com-
pression can even be improved when the FOV is directly
limited to the size of the FFP-trajectory. Our symmetric
boundary conditions for the DWT help us to perverse
the symmetries needed to get a maximum compression
performance from the DCT, which implicitly assumes
symmetric boundary conditions for spatial structure of
the frequency components.

For demonstration purposes, the two-dimensional
decomposition can be defined recursively by

S `L L = S `−1
L L W T

h0h0

S `H L = S `−1
L L W T

h1h0

S `LH = S `−1
L L W T

h0h1

S `H H = S `−1
L L W T

h1h1

Ŝ ` = S `L L C T
2D,

(12)

where S `L L , is the lowpass filtered and downsampled
sub-matrix, which will also be transformed by the two-
dimensional DCT C 2D. The matrices S `H L , S `LH , and S `H H
include the bandpass filtered wavelet components of our
system matrix. The transformation matrices Wh0h0

, Wh0h1
,

Wh1h0
, and Wh1h1

describe the filtering with the (low/low)-
pass, (low/high)-pass, (high/low) and the (high/high)-

pass of the filterbank, followed by downsampling with
factor two in each dimension.

As an example, a two-dimensional decomposition is
shown in Figure 3. For each stage of the two-dimensional
DWT, the system matrix will be decomposed into four
submatrices. The lowpass filtered version of the system
matrix will then be transformed with the DCT to the com-
pressive domain, and it will also form the basis for the
next decomposition level of the spatial pyramid.

V. Level-wise reconstruction

The previously introduced formulation of the system ma-
trix is independent of the used reconstruction method,
so that the introduced formulation can be included in
different solvers. We consider the Tikhonov regularized
least-squares reconstruction problem

c ` = arg min
c∈RK`

+

‖S `T T −1
` c − f ‖2

2+λ
2‖c ‖2

2 (13)

with S `T ∈ CM×K` being the compressed system matrix
on decomposition stage `, λ > 0, and T −1

` ∈RK`×K` rep-
resenting the DWT+DCT transform of level `, where
K0 = N = Nx Ny Nz denotes the number of voxels of
the particle distribution. The number of voxels of each

subspace problem in (13) is K` =
�Nx

2`

�

 

Ny

2`

£

�Nz
2`

�

where d·e
means the ceiling operator. We start the reconstruction
on the coarse level Lmax and end on the finest level 0. The
reconstructed SPIOs distribution from the coarser reso-
lution is used as input for the next finer resolution stage
by inserting it into the low-resolution components of the
finer stage. The unknown high-resolution components
were initialized with zeros for the iterative reconstruc-
tion. The reconstruction problem is solved by a variation
of the fast iterative shrinkage thresholding (FISTA) [20].
Therefore, the problem (13) is reformulated as

c ` = arg min
c∈RK`

‖S `T T −1
` c − f ‖2

2+λ
2‖c ‖2

2+ IRK`
+
(c )

= arg min
c∈RK`

‖S `T T −1
` c − f ‖2

2+h (c ),
(14)

where

h (c ) =λ2‖c ‖2
2+ IRK`

+
(c ) (15)

and

IRK`
+
(c ) =

¨

0 for c ∈RK`
+

+∞ otherwise

denotes the indicator function for the non-negative sub-
space in RK` . It should be mentioned that FISTA is more
commonly known as solver for `1-minimization prob-
lems, where h (c ) =λ‖c ‖1 and the corresponding proxim-
ity operator is the soft-thresholding operator. However,
in [20] the algorithm was developed in a more general
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way, for arbitrary closed convex functions h (c ). By mak-
ing use of this fact, only an new proximity operator for
h (c ) in (15) has to be derived. It reads

proxh (c ) = arg min
u∈RK`

h (u ) +
1

2
‖u − c ‖2

2

=
�

max
§

0;
1

1+λ2
c`

ª�K`

`=1
.

(16)

By replacing the soft-thresholding operator from the typ-
ical `1-minimization problem with the proximity oper-
ator in (16), the variation of FISTA for the non-negative
least squares problem in (13) can be solved easily. The
resulting algorithm can be seen as a projected gradient
descent with a special adaptive choice of the step length.
However, in coarse resolution levels, exact non-negative
least squares solvers like the one in [21] can be used as
well. For large-scale matrices S `T , however, exact solvers
can be become quite slow.

VI. Dataset

We tested the approach on the simulated Lissajous-
trajectory MPI system matrix dataset which was also used
in [17]. For the simulated dataset, the first 62 frequency
components were deleted. To speed up the reconstruc-
tion, the system matrix was globally thresholded, so that
every sub-level system matrix retained a given percent-
age of its energy. In particular we used the biorthogo-
nal 9/7-filters to implement our wavelet transform. We
reconstructed the SPIOs distribution with and without
energy normalization of the rows of the subsystem ma-
trix. The parameters were λ= 0.35 for the reconstruction
with and λ= 10−4 for the reconstruction without normal-
ization. Both regularization parameters were selected by
hand. Regarding the chosen regularization parameter λ,
it should be mentioned that the DWT filter coefficients
were used with the same scaling as in [13]. With this scal-
ing, the biorthogonal transform becomes nearly energy
preserving. Consequently, the parameter λwas chosen
equally on all levels. More sophisticated strategies for
choosing the regularization parameter may be possible,
but are out of the scope of this publication. As stopping
criterion, an upper limit of 10−4 for the relative change of
the objective function and for the maximum number of
iterations 3000 was set. In practice, the maximum num-
ber of iterations was seldom reached. Our processor was
an Intel Core i7-3370K with 3.5 GHz and 4 physical and
8 logical kernels. We used Matlab R 2017b and did not
employ parallel programming.
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Figure 4: The mean reconstruction time vs. the percentage of
retained energy inside the system matrix for the combination
of the DWT and DCT and for using only the DCT. The term
Eng Norm means that an energy normalization is additionally
performed for each frequency component. In (a) only two
stages of the MRA decomposition were performed, whereas in
(b) four stages were performed.

VII. Results

VII.I. Duration time for reconstruction

In a first test, the level-wise reconstruction was tested
with regard to time consumption. Therefore, we repeated
the experiment ten times and calculated the average ex-
ecution time in seconds to reduce the influence of the
different workloads on the processor. We measured the
reconstruction time for the full 250×250 resolution phan-
tom from the coarsest to the finest resolution. For com-
parison reasons, also the reconstruction speed for the
whole DCT compressed system matrix was tested. The
results are shown in Figure 4. It can be observed that
with higher compression (i.e., lower retained energy in-
side the system matrices), the reconstruction time was
reduced. In Figure 4(a), only two decomposition steps
were performed, whereas in Figure 4(b), four decompo-
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Figure 5: The mean squared error vs. the percentage of re-
tained energy inside the system matrix for the combination of
the DWT and DCT as well as for using the DCT only. The term
Eng Norm means that an energy normalization is addition-
ally performed for each frequency component. In (a) only two
stages of the MRA decomposition were performed, whereas in
(b) four stages were used.

sition stages for the MRA were performed. The recon-
struction time for both number of decomposition stages
looks quite similar. Firstly, it can be observed that the
energy normalization significantly speeds up the recon-
struction, which is already well known. The MRA mostly
accelerated the reconstruction when a low compression
on the system matrix was used. The DCT+DWT+MRA
with energy normalization outperforms the reconstruc-
tion time for all tested retained energy levels.

VII.II. Reconstruction error

In this experiment, the mean squared error of the re-
construction depending on the retained energy level is
shown. These are the reconstruction errors for the same
setup as in the previous section. In Figure 5, it can be ob-
served that the reconstruction error for the phantom is
better with a higher retained energy of the system matrix.

Due to the noise inside the system matrix, a small com-
pression helps to improve the reconstruction, because
it helps to filter out noise from the system matrix. The
energy normalized reconstruction shows, again, better
reconstruction than the unnormalized one in Figure 5(a).
In Figure 5(b), around the optimum, the performance
of the MRA variants are nearly the same. Overall, the
proposed algorithm improves the reconstruction perfor-
mance. It should be noted that the reconstruction of the
particle distribution with 98.5% retained energy for this
system matrix is already significantly disturbed.

VII.III. Resolution phantom on different
coarse levels

We exemplary show an example of SPIOs-distribution
reconstruction on different levels in Figure 6. It can be
recognized that the structure of the 250×250-pixel dis-
tribution is also identifiable inside the low-resolution
reconstructions. It can be observed that the 63×63-pixel
reconstruction still has a good separation between the
particle spots and that the shapes are quite similar to
the 250×250 high-resolution version. The 32×32-pixel
reconstruction, however, has significant artifacts and de-
formations of the particle spots.

VIII. Discussion

The presented method uses a combination of two ma-
trix compression techniques and gives rise to an MRA.
It has the ability to first reconstruct the particle distri-
bution on a coarse level, and, if more computational
power is at hand, a high-resolution reconstruction can
be performed. The compression is not a necessary part
of this method. The method can also be used for a fast
reconstruction inside a multiresolution analysis without
compression of the system matrix. The MRA was able
to speed up the reconstruction significantly when only a
small number of coefficients was retained. Overall the
MRA has the same quality level in terms of mean squared
error as the DCT-based method. While only symmetric
boundary conditions were used, also other ones, such as
optimized boundary filters [22, 23], may be useful as well.
A possible application of the developed method could
be to find the support of the SPIOs distribution inside
the FOV and to exclude regions without particle distri-
bution earlier on the finer grid, where the linear system’s
condition is typically worse. In addition, an interesting
scenario for the approach with its joint local and global
transforms could be the use inside a compressed-sensing
framework for the reconstruction of SPIO distributions.
Since the DWT and DCT offer compression for both the
system matrix and the image to be reconstructed, our
developed transform offers us the best of two worlds: A
good compressive transform for the system matrix and a
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Figure 6: The SPIOs reconstruction of the MRA from left to right: 250× 250, 63× 63, and 32× 32 pixels. The upper row was
reconstructed with energy normalization, and the lower without. The images were clipped to [0, 2level] for visualization.

good compressive transform for the particle distribution,
which is highly promising for this purpose.

IX. Conclusions
We developed an MRA formulation for MPI based on the
DWT and the DCT-II. We were able to show the efficiency
of our approach, which offers the possibility to proceed
step-wise from a coarse level to a high-resolution recon-
struction of the SPIOs distribution. Our future research
will be directed toward developing a compressed-sensing
based reconstruction of the particle distributions using
our MRA formulation of the system matrix.
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