
International Journal on Magnetic Particle Imaging
Vol 5, No 1-2, Article ID 1907001, 9 Pages

Research Article

MPIReco.jl: Julia Package for
Image Reconstruction in MPI
Tobias Knoppa ,b ,∗· Patryk Szwargulskia ,b · Florian Griesea ,b · Mirco Grossera ,b · Marija Boberga ,b ·
Martin Möddela ,b

aSection for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
b Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
∗Corresponding author: t.knopp@uke.de

Received 07 May 2019; Accepted 19 June 2019; Published online 09 July 2019

© 2019 Knopp; licensee Infinite Science Publishing GmbH

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Abstract
Image reconstruction plays an important role for the tomographic imaging technique magnetic particle imaging
(MPI) since the measured raw data cannot be directly interpreted. Instead, one needs to invert the image formation
process, which involves the solution of an ill-conditioned linear system of equations. Currently, most MPI researchers
have implemented custom reconstruction algorithms that cannot be directly compared since the source code
is not openly available. The software package MPIReco.jl aims to change this situation by providing a reference
implementation for a variety of reconstruction algorithms. With the recently proposed magnetic particle imaging
data format and its reference implementation MPIFiles.jl we have taken the first steps towards standardised data
exchange. With MPIReco.jl we complement these initiatives to standardise the reconstruction algorithms and to
facilitate reproducible research. We chose to implement the algorithms in the programming language Julia, which
provides a high level syntax making the software accessible even for non-professional software developers. On the
other hand Julia code has a high run-time performance comparable to low-level C code. In the present paper, we
outline some of the design principles of MPIReco.jl and give an overview of the software package.

I. Introduction

Magnetic nanoparticles (MNP) are useful tracers for the
diagnosis of a variety of diseases. While the particles
enhance the contrast in magnetic resonance imaging
by affecting the T ∗2 relaxation time of the measured tis-
sue, the tomographic imaging method magnetic particle
imaging (MPI) measures the particle concentration di-
rectly and thus provides a positive contrast. Potential
applications of MPI can be found in the field of vascu-
lar imaging [1–4], in the field of targeted imaging [5–7],
and in the field of neuroimaging [8–11]. When medical
instruments are labeled with particles, MPI is also suited
for interventional imaging [12–14].

Since its invention in 2001, and its first publication in
2005 [15], numerous improvements and variations of the
original idea have been developed in the field of instru-
mentation, field sequences, and particle synthesis. Still,
the basic principle remains: The particles are excited
with a set of excitation coils, and the change of the parti-
cle magnetization is recorded with inductive receiving
coils. The crucial step for obtaining the final image based
on the recorded signal is to apply a reconstruction step
that inverts the physical process happening during the
MPI experiment. Based on Faradays law of induction one
can show that the relation between the induced signals
and the particle concentration is linear and reconstruc-
tion thus involves the solution of a linear system of equa-

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

t.knopp@uke.de
https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 2

tions. Since the linear system is ill-conditioned [16] it
requires an appropriate regularization technique to cope
with the noise in the measurements. Most researchers
apply Tikhonov regularization while recent works [17,
18] also use more sophisticated yet computationally ex-
pensive priors. The use of iterative solvers was initially
proposed in [19].

One increasingly important topic in the field of image
reconstruction is the question how to handle multi-patch
data, where a large region of interest is partitioned into
small patches sampled sequentially. In [20] and [21] an
algorithm for reconstructing multi-patch data in a joint
fashion ensuring consistency at patch boundaries has
been developed. A time and memory efficient implemen-
tation of the algorithm has been proposed in [22]. An-
other important field that has been established in [23] is
the field of multi-contrast reconstruction. Instead of cal-
culating the distribution of a single tracer, multi-contrast
reconstruction is capable of determining the distribution
of several different tracers. The same technique can also
be used to determine environment parameters such as
viscosity [24], temperature [25], or particle size [26]. Nev-
ertheless, whether for a multi-patch or a multi-contrast
reconstruction, the system matrices and, above all, the
linear systems of equations to be solved can grow rapidly
and thus drastically prolong the reconstruction time. A
method to counter this problem is the use of matrix com-
pression techniques proposed in [27–29].

While there is growing stack of innovative reconstruc-
tion approaches, one increasing challenge is to apply
and validate the methods under comparable conditions.
This is due to the fact that research articles commonly
only provide the algorithmic description of the methods,
while no runnable code is provided. One exception is
the system matrix viewer published in [30]. The software
package MPIReco.jl aims at changing this situation by
providing an open software platform for a variety of MPI
reconstruction algorithms. MPIReco.jl is scanner agnos-
tic and focuses on system matrix based reconstruction
algorithms. It implements a processing chain that was
originally developed in [19]. Beside baseline image recon-
struction, MPIReco.jl also provides algorithms for more
sophisticated reconstruction schemes, such as efficient
joint multi-patch reconstruction [22], multi-gradient re-
construction [31], and multi-contrast reconstruction [23].
For accelerated image reconstruction MPIReco.jl imple-
ments matrix-compression techniques developed in [27–
29]. The present paper gives an overview of MPIReco.jl
and discusses its main design principles. Whenever we
use programming code in this work, we indicate it by
using a typewriter font.

Figure 1: Dependency graph of MPIReco.jl including the most
important direct and indirect dependencies.

II. Overview
MPIReco.jl is implemented in the programming language
Julia [32]. Julia is a high-level multi-purpose program-
ming language that is easy to use and allows to imple-
ment algorithms with a high degree of abstraction while
still generating efficient machine code. The language
fully supports generic programming and dispatches on
the type of function arguments (multiple dispatch). This
allows to have common function interfaces implemented
by different concrete types. Julia is equipped with a pow-
erful package manager that facilitates a proper modu-
larization of independent functionality. The complete
documentation and the description of how to install Ju-
lia can be found online.1 MPIReco.jl leverages this flex-
ibility by using several existing Julia packages, which
can be found in the dependency graph shown in Fig-
ure 1. The two main dependencies are MPIFiles.jl [33]
and RegularizedLeastSquares.jl. The former provides a
unified access to different MPI raw data files such as
the files measured with the MPI scanner from Bruker or
vendor-independent magnetic particle imaging data for-
mat (MDF) files [34]. RegularizedLeastSquares.jl provides
different algorithms for solving regularized least squares
problems such as the Kaczmarz algorithm [35], which is
commonly used in MPI. In addition, more sophisticated
solvers like the fused lasso solver [17] are available.

MPIReco.jl is developed within a public Git reposi-
tory hosted at Github.2 The project is part of the Mag-
neticParticleImaging organization and contains online
documentation that can be accessed from the project
homepage. Bug reports, feature requests, and comments
can be made using an issue tracker. Any commit made
to MPIReco.jl is tested using continuous integration ser-
vices. MPIReco.jl is supposed to run on any operating
system and platform that Julia itself supports. Currently,
the test suite runs successfully on Linux, OS X, and Win-
dows.

The software package can be installed from Julia itself
by opening the package mode (by entering ]within Julia)
and then entering the following command:

1https://julialang.org/
2https://github.com/MagneticParticleImaging/
MPIReco.jl

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://julialang.org/
https://github.com/MagneticParticleImaging/MPIReco.jl
https://github.com/MagneticParticleImaging/MPIReco.jl
https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 3

(v1.1) pkg> add MPIReco

This will install the latest released version of MPIReco.jl.
If you want to make changes to the package you can
checkout the package for development by entering the
following command:

(v1.1) pkg> dev MPIReco

The files then can be edit within the following folder:
~/.julia/dev/MPIReco/

In this paper we consider version 0.1.1 of MPIReco.jl. The
package works on any Julia version greater than 1.0. We
recommend to always use the newest stable Julia ver-
sion, which is version 1.1 at the time this paper has been
published.

II.I. Background
The system matrix based reconstruction approach con-
siders the linear system of equations

S c =u , (1)

where S ∈ CM×N is the complex-valued system matrix,
u ∈CM are the Fourier coefficients of the induced signals
and c ∈ RN is the particle concentration vector. The
first dimension of the matrix S does usually not only
encode the number of frequencies, but also the number
of receive channels and the number of patches. The
second dimension encodes the number of image voxels
and – in the case of multi-contrast MPI – the number of
contrasts (discussed in Section IV).

The linear system is usually not setup completely. In-
stead one first applies a filter according to specific rules
and loads only a subset of the matrix rows. The corre-
sponding reduced system of equations then reads

S redc =u red, (2)

where S red ∈ CM̃×N and u ∈ CM̃ . For 3D system matri-
ces that can be larger than 30 GB, this data reduction is
crucial to avoid exceeding the main memory of the re-
construction computer. After filtering of the matrix rows
the linear system (2) is usually solved in a least-squares
fashion by calculating

c Reco = argmin
c ∈RN ,c ≥0

‖S redc −u red‖2
2+R (c ), (3)

where R is a regularization term that penalizes implau-
sible solutions. For instance R can be the L1 or the L2

norm. The optimization problem (3) is commonly solved
using iterative solvers [19].

MPIReco.jl provides different reconstruction levels
ranging from high level, where the user only has to hand
over the paths of the measurements to low level, where

the user has all parameter freedoms and handles the data
as arrays. All of these reconstruction routines are called
reconstruction and the dispatch is done based on the
input types. Here, we exploit Julia’s powerful multiple-
dispatch mechanism. In the following we discuss each
level starting with the high-level reconstruction.

II.II. High-level reconstruction
For the high-level reconstruction one first defines a struc-
tured dictionary recoParams which has the mandatory
parameter :measPath. The colon here is a special Julia
syntax for defining a symbol, which can be used as a key
in a dictionary. An example parameter set could look as
follows:

recoParams = Dict{Symbol,Any}()
recoParams[:measPath] = fnMeas
recoParams[:SFPath] = fnSF
recoParams[:frames] = 1:100
recoParams[:numAverages] = 10
recoParams[:SNRThresh] = 4.0
recoParams[:lambda] = 0.001
recoParams[:iterations] = 10

Here, fnMeas and fnSF are the paths of the measure-
ment and the system matrix, respectively. Having de-
fined the reconstruction parameters one can pass the
recoParams to the reconstruction function, which has
the following function signature:

reconstruction(recoParams::Dict)

Instead of putting all parameters into a dictionary one
can instead call reconstruction like this:

reconstruction(fnSF::AbstractString,
fnMeas::AbstractString;
kargs...)

Here, kargs are keyword arguments. The kargs...
syntax indicates that there can be various keyword argu-
ments. The previous example would for instance trans-
late into the following:

reconstruction(fnSF,
fnMeas;
frames = 1:100,
numAverages = 10,
SNRThresh = 4.0,
lambda = 0.001,
iterations = 10)

Keyword arguments play an important role in the design
of MPIReco.jl. The idea is that each reconstruction layer

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 4

has a certain set of parameters that it will use while the
remaining parameters in kargs will be passed to the
next layer. This allows to make changes in the low-level
code without any necessity to make changes in one of
the higher levels.

The advantage of using a dictionary is that one can
keep all parameters in a single structure, which can be
copied, compared, saved in a file and so on. One com-
mon pattern is to perform reconstructions with varying
parameters, which can be done by first defining a dictio-
nary with all static parameters and than loop over the
parameters that are to be varied. An example where the
regularization parameter is changed looks like this:

c = Any[]
for lambda in [0.001, 0.01, 0.1]

recoParams[:lambda] = lambda
cl = reconstruction(recoParams)
push!(c, cl)

end

Instead of passing the filename as a string one can also
pass anMPIFile, which is an abstract type describing an
MPI data file including all important information about
the scans [34]. Different implementations of anMPIFile
exist in MPIFiles.jl such as BrukerFile and MDFFile.
The function signature of the reconstruction function
then looks like this:

reconstruction(fSF::MPIFile,
fMeas::MPIFile;
kargs...)

The high-level reconstruction checks if the dataset is
a single-patch or a multi-patch dataset and then calls
the corresponding specialized functions. Additionally,
the function calls filterFrequencies from the MPI-
Files.jl package to select only a subset of all frequency
components as described in (2). The most important fre-
quency selection parameters are outlined in Section II.VI.
The high-level reconstruction is mainly suitable for users
who do not want to develop new methods themselves but
want to reconstruct their MPI data with the established
tools.

II.III. Middle Level Reconstruction

The next layer of the reconstruction function looks like
this:

reconstruction(fSF::MPIFile,
fMeas::MPIFile,
freq::Vector;
kargs...)

One can see that the frequency index is passed to this
function as the third argument, so that the user can easily
integrate own frequency selection algorithms and test
them in the reconstruction. The function is responsible
for loading the system matrix, the measurement data,
and potential background data that is subtracted from
the measurement. For any frame to be reconstructed,
the low-level reconstruction routine is called.

II.IV. low-level reconstruction

Finally, we arrived at the low-level reconstruction routine
that has the following signature:

reconstruction(S::Any,
u::Array;
kargs...)

One can see that it requires the system matrix S
and the measurements u to be already loaded. On
purpose, the matrix S is not restricted in the type.
For a regular reconstruction one will basically feed
in a Matrix{ComplexF32}, although more precisely
it will be a transposed version of that type if the
"kaczmarz" algorithm is being used. However, in
case that matrix compression is applied S will be of
type SparseMatrixCSC. And for multi-patch recon-
struction S will be a dedicated type as well. The low-
level reconstruction method calls one of the solvers
from RegularizedLeastSquares.jl. At this level,
the user has all freedom and has to make sure that the
data is available in the correct format and dimension.
This also allows users to reconstruct data from other scan-
ners without having to convert it to a specific file format
like the MDF.

II.V. Solver

The most important parameters for choosing the linear
solver are outlined in the following table:

Parameter Description
solver Solver used for reconstruction
lambda or λ Regularization parameter

Can be a scalar or a vector in
case of multiple regularizers

shuffleRows Shuffle rows in the Kaczmarz
algorithm

enforceReal Enforce a real solution
enforcePositive Enforce a positive solution

The solver is chosen based on the solver keyword that
accepts a String, which in Julia is written using quotation
marks. Currently, solver can be any of "kaczmarz",
"cgnr", "fusedlasso". Depending on the solver,

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 5

there can be additional keyword arguments. For instance
all iterative algorithms have an argument iterations
that controls the number of iterations being used. All
solvers providing Tikhonov regularization have a param-
eter lambda that controls the regularization parameter.
When using a single regularization term, like L2 regu-
larization, lambda can be a scalar Float64 value. In
case of multiple regularizers, lambda has to be a vector
of floats. The "fusedlasso" solver, for instance, im-
plements L1 and T V regularization. Therefore, lambda
needs to be of length two. The"kaczmarz" solver has an
additional boolean parameter shuffleRows that allows
to use a randomized version of the Kaczmarz algorithm.
The parameters enforceReal and enforcePositive
are also boolean and can be used to enforce the solution
to be real and positive, respectively.

II.VI. Frequency Selection Parameters

The most important parameters that can be used to con-
trol the frequency selection are listed in the following
table:

Parameter Description
minFreq Minimum frequency threshold
maxFreq Maximum frequency threshold
SNRThresh SNR threshold
recChannels Selected receive channels

Can be a vector like [1,2,3]
or a range like 1:2

maxMixingOrder Maximum mixing order

It is very common to remove frequency components that
are below the noise floor, which can be done by choosing
SNRThresh > 1. The restriction of the receive channel
can be important when investigating the influence of
the receive channels on the reconstruction result [36] or
when using a custom receiver as was done in [3]. The
parameters minFreq and maxFreq can be used to cut
off all frequencies below or above the specialised borders
as for example to cut off the drive field frequencies. For
the Bruker scanner used in e.g. [37] having excitation fre-
quencies between 24.510 kHz and 26.042 kHz, one can
remove the excitation frequencies by setting minFreq to
27000. Since the analog filter used to damp the excita-
tion frequencies is not sharp, one may in practise use a
higher frequency cut-off.

As an alternative to the SNR threshold, frequency se-
lection can also be based in mixing orders [38] by speci-
fying the parameter maxMixingOrder putting an upper
bound on the mixing order of the frequency components.
The mixing order was introduced in [39] and there is
a monotonic dependency between mixing factors and
SNR [19].

II.VII. General Parameters

Beside the frequency selection parameters, following pa-
rameters are important to control the reconstruction pro-
cess:

Parameter Description
frames Frames to be reconstructed
numAverages Number of block averages
spectralLeakage-
Correction

Flag for enabling spectral
leakage correction

emptyMeas Empty measurement, has to
be an MPIFile. Otherwise
specify emptyMeasPath

bgFrames Frames within the empty
measurement that are taken
for background estimation

bgCorrection-
Internal

Flag if internal background
frames are used for back-
ground subtraction

The most important parameter here is frames, which is
used to specify the frames that should be reconstructed.
When setting for instance numAverages = 100 and
frames = 1:1000 one will obtain 10 reconstructed im-
ages where for each image a block of 100 raw data frames
has been averaged prior to reconstruction.

The flag spectralLeakageCorrection controls
whether a spectral leakage correction is applied when
the data is loaded. For this purpose three neighbour-
ing frames are windowed with a Hann window and the
average of the three frames is taken.

Background subtraction can be done by specifying
emptyMeas, which can either be another file that has
been measured with an empty bore or the same file as
is used for reconstruction. The later is useful in case
that the measurement is initiated with an empty scanner
bore. The frames taken for background subtraction are
specified by bgFrames. All frames are averaged before
they are subtracted. Instead of using a dedicated empty
measurement file, one can also use internal empty mea-
surements, if the file to be reconstructed contains back-
ground frames. For instance, the MDF data within the
Open MPI Data3 contain empty measurements within
the files itself.

II.VIII. Reconstruction Result

The return value c of reconstruction except for the
low-level variant is not a simple Array but a high level
wrapper around the data. In particular two wrappers
are applied. The first is an AxisArray, which gives the
dimensions of c a name, a range, and units. The second
is an ImageMeta, which is basically just the regular array

3https://magneticparticleimaging.github.io/
OpenMPIData.jl/latest/

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://magneticparticleimaging.github.io/OpenMPIData.jl/latest/
https://magneticparticleimaging.github.io/OpenMPIData.jl/latest/
https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 6

plus a dictionary that can hold arbitrary metadata. In
order to get rid of the wrappers one can call the following:

c.data.data

The first .data will take of the ImageMeta wrapper,
while the second.datawill take of theAxisArraywrap-
per.

But there is reason to work with the ImageMeta type.
For instance, the reconstruction result can be stored by
calling the following function:

saveRecoData("reco.mdf", c)

If we inspect the stored data using an HDF5 viewer, we
can see that all acquisition parameters are stored cor-
rectly and that even the reconstruction parameters are
stored. This was only possible since this data was present
in the ImageMetawrapper. If we want to load the stored
image we can call the following function:

cmdf = loadRecoData("reco.mdf")

The object cmdf is of the same type and content as the
originally reconstructed object c.

We note that the storage of reconstruction data into
an MDF has the advantage that it is lossless. The disad-
vantage is that common image viewers such as ImageJ
will not be capable of loading the data. For this purpose
one can use the NIfTI.jl or the DICOM.jl package both of
which are under development.

The reconstructed image c has always five dimen-
sions. Keeping the number of dimensions static has the
advantage that the user knows exactly what to expect
from the reconstructionmethod, which is the key for
writing type-stable code. The first dimension of c is the
channel dimension. The dimension will be a singleton
dimension unless a multi-contrast reconstruction is per-
formed. More details on that will follow in Section IV. The
2nd to 4th dimension of c are the three spatial dimen-
sions Nx , Ny , Nz of which some can again be singleton
dimensions in case that 1D or 2D reconstructions are
performed. The 5th dimension of c is the frame dimen-
sion. It encodes the number of (averaged) frames being
reconstructed.

III. Multi-Patch

For multi-patch reconstruction a generalized version of
the method proposed in [22] is integrated into MPIReco.jl.
The algorithm integrates the data from different patches
into a single linear system of equations and then per-
forms a joint reconstruction [20]. In the sequel, we con-
sider a multi-patch experiment with L patches.

In principle, MPIReco.jl will automatically detect that
the provided measurement file fMeas contains multiple
patches and will then invoke the multi-patch reconstruc-
tion. In case that the patches are measured in separate
measurements one can create a multi-patch file using
the following constructor:

fMultiPatch = MultiMPIFile([fnPatch1, ...,
fnPatchL])

Here, fnPatch1, ..., fnPatchL are the filenames
of the single-patch measurements.

If only a single system matrix is passed to the recon-
struction, MPIReco.jl will assume shift-invariance and
use the provided system matrix for all patches. Due to
field imperfections, it can be advantageous to use a ded-
icated system matrix per patch. This can be done by
passing several system matrices to the reconstruction:

fSF = MultiMPIFile([fnSFPatch1, ...,
fnSFPatchL])

c = reconstruction(fSF, fMultiPatch;
kargs...)

Here, fnSFPatch1, ..., fnSFPatchL are the file-
names of the system matrices. It is also possible to use
less than L but more than one system matrix. In that
case, one has to pass an index vector of length L to the
reconstruction function as the keyword argument
mapping. The vector specifies, which system matrix
within the MultiMPIFile is to be used for a certain
patch. As an example where two system matrices should
be used to reconstruct four patches, the following map-
ping could be used:

mapping = [1,1,2,2]

With this, patches one and two are reconstructed with
the first system matrix and patches three and four with
the second system matrix.

IV. Multi-Contrast

MPIReco.jl also implements algorithms that are com-
monly known as multi-contrast or multi-colored recon-
struction. Let D be the number of colors or channels.
Then, the multi-contrast reconstruction solves the linear
system of equations

�

S 1 · · · S D

�





c 1
...

c D



=u , (4)

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 7

where c d , d = 1, . . . , D are the individual channels being
reconstructed and S d , d = 1, . . . , D are the system ma-
trices required for reconstruction. For instance, in the
initial publication by Rahmer et al. [23], D was 3 and
the three system matrices were measured with different
tracer materials.

To perform a multi-contrast reconstruction using
MPIReco.jl one needs the filenames of the different sys-
tem matrices fnS1, ..., fnSD. Then, one can create
a multi-contrast file handle by calling the following con-
structor:

fSF = MultiContrastFile([fnS1, ..., fnSD])

With that one can then call the regular reconstruction
method:

c = reconstruction(fSF, fMeas; kargs...)

MPIReco.jl will automatically load the system matrices in
a way that they are combined into the composed matrix
outlined in (4). For the frequency selection an intersec-
tion is performed ensuring that the same matrix rows are
available for each system matrix.

We note that reconstruction will return an array
that encodes the color channel in its first dimension. If
c is the return value of reconstruction, then the d -th
channel can be accessed by c[d,:,:,:,:].

V. Matrix-Compression

The reconstruction can be accelerated by applying ma-
trix compression. To this end, the system matrix S is
transformed into a different domain by applying a ba-
sis transformation on the rows of the system matrix. In
MPIReco.jl, matrix compression can be enabled by speci-
fying sparseTrafo, which can be "DCT-IV" or "FFT".

The transformations can be restricted to the drive-
field field-of-view by setting useDFFoV = true. The
compression factor that controls how many coefficients
are dropped after application of the transformation is
controlled by the parameter redFactor. For instance a
reduction factor of redFactor = 0.01 will drop 99 %
of the data.

VI. Discussion

This paper gave an overview on the functionality and
design principles of the Julia package MPIReco.jl. By
providing access to the individual layers of the recon-
struction chain from low level until high level, the user
can change individual parts of the reconstruction chain,
without the need to change the code of MPIReco.jl. For

instance one might implement a custom frequency se-
lection algorithm and then call the corresponding recon-
struction layer that gets a frequency index as argument.
This shows that MPIReco.jl targets both the user that just
wants to perform standard reconstruction by employing
the high-level interface and the MPI reconstruction ex-
pert that might want to make changes in the lower levels
of the reconstruction stack.

MPIReco.jl is an active open source project and will
evolve from the state that is described in the current pa-
per. But the function signatures and parameter names
listed in this paper are not expected to change anymore.
We have omitted several more experimental parameters
that affect functionality that is still in flux. Neverthe-
less, further changes can be retrieved and tracked on the
project website.4

MPIReco.jl is also used by the Open MPI Data initia-
tive.5 The latter was created to provide experimental MPI
data to other researchers who do not have direct access
to an MPI scanner. Together with MPIReco.jl, the Open
MPI Data initiative enables comparison against state of
the art algorithms on standardized datasets, when re-
searchers develop new reconstruction algorithms. By
integrating new algorithms into MPIReco.jl, the repro-
ducibility of studies can be significantly increased.

While currently MPIReco.jl is restricted to the recon-
struction based on a system matrix, the framework could
in-principle be enhanced to also implement x -space
reconstruction [40]. This will require a new parameter
responsible for switching between a system matrix based
reconstruction and an x -space reconstruction.

VII. Conclusion
In conclusion, MPIReco.jl is a versatile software pack-
age for the reconstruction of magnetic particle imag-
ing data. It focuses on system matrix based reconstruc-
tion, can handle single-patch, multi-patch, and multi-
contrast data, and implements matrix compression tech-
niques for accelerated reconstruction. MPIReco.jl is im-
plemented in Julia and optimized in runtime perfor-
mance. It makes state-of-the-art reconstruction algo-
rithms accessible for other researchers and complements
the Open MPI data initiative, which provides users with-
out an MPI scanner experimental measurement data that
can be used for validation purposes.

4https://github.com/MagneticParticleImaging/
MPIReco.jl

5https://github.com/MagneticParticleImaging/
OpenMPIData.jl

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://github.com/MagneticParticleImaging/MPIReco.jl
https://github.com/MagneticParticleImaging/MPIReco.jl
https://github.com/MagneticParticleImaging/OpenMPIData.jl
https://github.com/MagneticParticleImaging/OpenMPIData.jl
https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 8

References
[1] J. Weizenecker, J. Borgert, and B. Gleich. A simulation study on the

resolution and sensitivity of magnetic particle imaging. Physics in
Medicine and Biology, 52(21):6363–6374, 2007, doi:10.1088/0031-
9155/52/21/001.

[2] P. Vogel, M. A. Rückert, P. Klauer, W. H. Kullmann, P. M. Jakob, and
V. C. Behr. First in vivo traveling wave magnetic particle imag-
ing of a beating mouse heart. Physics in Medicine and Biology,
61(18):6620–6634, 2016, doi:10.1088/0031-9155/61/18/6620.

[3] M. Graeser, T. Knopp, P. Szwargulski, T. Friedrich, A. von Gladiss,
M. Kaul, K. M. Krishnan, H. Ittrich, G. Adam, and T. M. Buzug.
Towards Picogram Detection of Superparamagnetic Iron-Oxide
Particles Using a Gradiometric Receive Coil. Scientific Reports,
7(1):6872, 2017, doi:10.1038/s41598-017-06992-5.

[4] S. Vaalma, J. Rahmer, N. Panagiotopoulos, R. L. Duschka, J. Borg-
ert, J. Barkhausen, F. M. Vogt, and J. Haegele. Magnetic Particle
Imaging (MPI): Experimental Quantification of Vascular Stenosis
Using Stationary Stenosis Phantoms. PLOS ONE, 12(1):e0168902B.
Xu, Ed., 2017, doi:10.1371/journal.pone.0168902.

[5] J. W. M. Bulte, P. Walczak, M. Janowski, K. M. Krishnan, H. Arami, A.
Halkola, B. Gleich, and J. Rahmer. Quantitative “Hot-Spot” Imag-
ing of Transplanted Stem Cells Using Superparamagnetic Tracers
and Magnetic Particle Imaging. Tomography, 1(2):91–97, 2015,
doi:10.18383/j.tom.2015.00172.

[6] J. Dieckhoff, M. G. Kaul, T. Mummert, C. Jung, J. Salamon,
G. Adam, T. Knopp, D. Schwinge, and H. Ittrich. Magnetic
Particle Imaging of liver tumors in small animal models. In-
ternational Journal on Magnetic Particle Imaging, 3(2), 2017,
doi:10.18416/IJMPI.2017.1707003.

[7] E. Y. Yu, P. Chandrasekharan, R. Berzon, Z. W. Tay, X. Y. Zhou,
A. P. Khandhar, R. M. Ferguson, S. J. Kemp, B. Zheng, P. W. Good-
will, M. F. Wendland, K. M. Krishnan, S. Behr, J. Carter, and S. M.
Conolly. Magnetic Particle Imaging for Highly Sensitive, Quantita-
tive, and Safe in Vivo Gut Bleed Detection in a Murine Model. ACS
Nano, 11(12):12067–12076, 2017, doi:10.1021/acsnano.7b04844.

[8] E. E. Mason, C. Z. Cooley, S. F. Cauley, M. A. Griswold, S. M. Conolly,
and L. L. Wald. Design analysis of an MPI human functional brain
scanner. International Journal on Magnetic Particle Imaging, 3(1),
2017, doi:10.18416/IJMPI.2017.1703008.

[9] C. Z. Cooley, J. B. Mandeville, E. E. Mason, E. T. Mandev-
ille, and L. L. Wald. Rodent Cerebral Blood Volume (CBV)
changes during hypercapnia observed using Magnetic Parti-
cle Imaging (MPI) detection. NeuroImage, 178:713–720, 2018,
doi:10.1016/j.neuroimage.2018.05.004.

[10] L. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss,
F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G.
Grant, and M. Wintermark. A Review of Magnetic Particle Imaging
and Perspectives on Neuroimaging. American Journal of Neurora-
diology, 40(2):206–212, 2019, doi:10.3174/ajnr.A5896.

[11] P. Ludewig, N. Gdaniec, J. Sedlacik, N. D. Forkert, P. Szwargulski,
M. Graeser, G. Adam, M. G. Kaul, K. M. Krishnan, R. M. Ferguson,
A. P. Khandhar, P. Walczak, J. Fiehler, G. Thomalla, C. Gerloff, T.
Knopp, and T. Magnus. Magnetic Particle Imaging for Real-Time
Perfusion Imaging in Acute Stroke. ACS Nano, 11(10):10480–10488,
2017, doi:10.1021/acsnano.7b05784.

[12] J. Haegele, N. Panagiotopoulos, S. Cremers, J. Rahmer, J. Franke,
R. L. Duschka, S. Vaalma, M. Heidenreich, J. Borgert, P. Borm, J.
Barkhausen, and F. M. Vogt. Magnetic Particle Imaging: A Resovist
Based Marking Technology for Guide Wires and Catheters for
Vascular Interventions. IEEE Transactions on Medical Imaging,
35(10):2312–2318, 2016, doi:10.1109/TMI.2016.2559538.

[13] J. Salamon, M. Hofmann, C. Jung, M. G. Kaul, F. Werner, K.
Them, R. Reimer, P. Nielsen, A. vom Scheidt, G. Adam, T. Knopp,
and H. Ittrich. Magnetic Particle / Magnetic Resonance Imag-
ing: In-Vitro MPI-Guided Real Time Catheter Tracking and
4D Angioplasty Using a Road Map and Blood Pool Tracer Ap-
proach. PLOS ONE, 11(6):e0156899M. Yamamoto, Ed., 2016,
doi:10.1371/journal.pone.0156899.

[14] S. Herz, P. Vogel, P. Dietrich, T. Kampf, M. A. Rückert, R. Kick-
uth, V. C. Behr, and T. A. Bley. Magnetic Particle Imaging Guided
Real-Time Percutaneous Transluminal Angioplasty in a Phantom
Model. CardioVascular and Interventional Radiology, 41(7):1100–
1105, 2018, doi:10.1007/s00270-018-1955-7.

[15] B. Gleich and J. Weizenecker. Tomographic imaging using the
nonlinear response of magnetic particles. Nature, 435(7046):1214–
1217, 2005, doi:10.1038/nature03808.

[16] T. Knopp, S. Biederer, T. Sattel, and T. M. Buzug, Singular value
analysis for Magnetic Particle Imaging, in 2008 IEEE Nuclear
Science Symposium Conference Record, 4525–4529, IEEE, 2008.
doi:10.1109/NSSMIC.2008.4774296.

[17] M. Storath, C. Brandt, M. Hofmann, T. Knopp, J. Salamon,
A. Weber, and A. Weinmann. Edge Preserving and Noise
Reducing Reconstruction for Magnetic Particle Imaging.
IEEE Transactions on Medical Imaging, 36(1):74–85, 2017,
doi:10.1109/TMI.2016.2593954.

[18] C. Bathke, T. Kluth, C. Brandt, and P. Maaß. Improved image recon-
struction in magnetic particle imaging using structural a priori
information. International Journal on Magnetic Particle Imaging,
3(1), 2017, doi:10.18416/IJMPI.2017.1703015.

[19] T. Knopp, J. Rahmer, T. F. Sattel, S. Biederer, J. Weizenecker, B. Gle-
ich, J. Borgert, and T. M. Buzug. Weighted iterative reconstruction
for magnetic particle imaging. Physics in Medicine and Biology,
55(6):1577–1589, 2010, doi:10.1088/0031-9155/55/6/003.

[20] T. Knopp, K. Them, M. Kaul, and N. Gdaniec. Joint recon-
struction of non-overlapping magnetic particle imaging focus-
field data. Physics in Medicine and Biology, 60(8):L15–L21, 2015,
doi:10.1088/0031-9155/60/8/L15.

[21] M. Ahlborg, C. Kaethner, T. Knopp, P. Szwargulski, and T. M.
Buzug. Using data redundancy gained by patch overlaps to re-
duce truncation artifacts in magnetic particle imaging. Physics in
Medicine and Biology, 61(12):4583–4598, 2016, doi:10.1088/0031-
9155/61/12/4583.

[22] P. Szwargulski, M. Möddel, N. Gdaniec, and T. Knopp. Ef-
ficient Joint Image Reconstruction of Multi-Patch Data
Reusing a Single System Matrix in Magnetic Particle Imaging.
IEEE Transactions on Medical Imaging, 38(4):932–944, 2019,
doi:10.1109/TMI.2018.2875829.

[23] J. Rahmer, A. Halkola, B. Gleich, I. Schmale, and J. Borgert. First
experimental evidence of the feasibility of multi-color magnetic
particle imaging. Physics in Medicine and Biology, 60(5):1775–91,
2015, doi:10.1088/0031-9155/60/5/1775.

[24] M. Möddel, C. Meins, J. Dieckhoff, and T. Knopp. Viscosity
quantification using multi-contrast magnetic particle imaging.
New Journal of Physics, 20(8):083001, 2018, doi:10.1088/1367-
2630/aad44b.

[25] C. Stehning, B. Gleich, and J. Rahmer. Simultaneous magnetic
particle imaging (MPI) and temperature mapping using multi-
color MPI. International Journal on Magnetic Particle Imaging,
2(2), 2016, doi:10.18416/IJMPI.2016.1612001.

[26] C. Shasha, E. Teeman, K. M. Krishnan, P. Szwargulski, T. Knopp,
and M. Möddel. Discriminating nanoparticle core size using multi-
contrast MPI. Physics in Medicine & Biology, 64(7):074001, 2019,
doi:10.1088/1361-6560/ab0fc9.

[27] J. Lampe, C. Bassoy, J. Rahmer, J. Weizenecker, H. Voss, B. Gle-
ich, and J. Borgert. Fast reconstruction in magnetic particle
imaging. Physics in Medicine and Biology, 57(4):1113–1134, 2012,
doi:10.1088/0031-9155/57/4/1113.

[28] T. Knopp and A. Weber. Local System Matrix Compression for Ef-
ficient Reconstruction in Magnetic Particle Imaging. Advances in
Mathematical Physics, 2015:1–7, 2015, doi:10.1155/2015/472818.

[29] L. Schmiester, M. Möddel, W. Erb, and T. Knopp. Direct Im-
age Reconstruction of Lissajous-Type Magnetic Particle Imag-
ing Data Using Chebyshev-Based Matrix Compression. IEEE
Transactions on Computational Imaging, 3(4):671–681, 2017,
doi:10.1109/TCI.2017.2706058.

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://dx.doi.org/10.1088/0031-9155/52/21/001
https://dx.doi.org/10.1088/0031-9155/52/21/001
https://dx.doi.org/10.1088/0031-9155/61/18/6620
https://dx.doi.org/10.1038/s41598-017-06992-5
https://dx.doi.org/10.1371/journal.pone.0168902
https://dx.doi.org/10.18383/j.tom.2015.00172
https://dx.doi.org/10.18416/IJMPI.2017.1707003
https://dx.doi.org/10.1021/acsnano.7b04844
https://dx.doi.org/10.18416/IJMPI.2017.1703008
https://dx.doi.org/10.1016/j.neuroimage.2018.05.004
https://dx.doi.org/10.3174/ajnr.A5896
https://dx.doi.org/10.1021/acsnano.7b05784
https://dx.doi.org/10.1109/TMI.2016.2559538
https://dx.doi.org/10.1371/journal.pone.0156899
https://dx.doi.org/10.1007/s00270-018-1955-7
https://dx.doi.org/10.1038/nature03808
https://dx.doi.org/10.1109/NSSMIC.2008.4774296
https://dx.doi.org/10.1109/TMI.2016.2593954
https://dx.doi.org/10.18416/IJMPI.2017.1703015
https://dx.doi.org/10.1088/0031-9155/55/6/003
https://dx.doi.org/10.1088/0031-9155/60/8/L15
https://dx.doi.org/10.1088/0031-9155/61/12/4583
https://dx.doi.org/10.1088/0031-9155/61/12/4583
https://dx.doi.org/10.1109/TMI.2018.2875829
https://dx.doi.org/10.1088/0031-9155/60/5/1775
https://dx.doi.org/10.1088/1367-2630/aad44b
https://dx.doi.org/10.1088/1367-2630/aad44b
https://dx.doi.org/10.18416/IJMPI.2016.1612001
https://dx.doi.org/10.1088/1361-6560/ab0fc9
https://dx.doi.org/10.1088/0031-9155/57/4/1113
https://dx.doi.org/10.1155/2015/472818
https://dx.doi.org/10.1109/TCI.2017.2706058
https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001


International Journal on Magnetic Particle Imaging 9

[30] U. Heinen, A. Weber, J. Franke, H. Lehr, and O. Kosch. A versatile
MPI System Function Viewer. International Journal on Magnetic
Particle Imaging, 3(2), 2017, doi:10.18416/IJMPI.2017.1706006.

[31] N. Gdaniec, P. Szwargulski, and T. Knopp. Fast multiresolu-
tion data acquisition for magnetic particle imaging using adap-
tive feature detection. Medical Physics, 44(12):6456–6460, 2017,
doi:10.1002/mp.12628.

[32] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh
Approach to Numerical Computing. SIAM Review, 59(1):65–98,
2017, doi:10.1137/141000671.

[33] T. Knopp, M. Möddel, F. Griese, F. Werner, P. Szwargulski, N.
Gdaniec, and M. Boberg. MPIFiles.jl: A Julia Package for Magnetic
Particle Imaging Files. Journal of Open Source Software, 4(38):1331,
2019, doi:10.21105/joss.01331.

[34] T. Knopp, T. Viereck, G. Bringout, M. Ahlborg, J. Rahmer, and M.
Hofmann. MDF: Magnetic Particle Imaging Data Format. ArXiv
e-prints, 2016. arXiv: 1602.06072v1. URL: https://arxiv.
org/abs/1602.06072v2.

[35] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gle-
ichungen. Bulletin International de l’Académie Polonaise des Sci-
ences et des Lettres, (35)pp. 355–357, 1937.

[36] P. Szwargulski and T. Knopp. Influence of the Receive Channel
Number on the Spatial Resolution in Magnetic Particle Imaging.
International Journal on Magnetic Particle Imaging, 3(1), 2017,
doi:10.18416/IJMPI.2017.1703014.

[37] T. Knopp and M. Hofmann. Online reconstruction of 3D mag-
netic particle imaging data. Physics in Medicine and Biology,
61(11):N257–N267, 2016, doi:10.1088/0031-9155/61/11/N257.

[38] P. Szwargulski, J. Rahmer, M. Ahlborg, C. Kaethner, and T. M.
Buzug. Experimental evaluation of different weighting schemes in
magnetic particle imaging reconstruction. Current Directions in
Biomedical Engineering, 1(1):206–209, 2015, doi:10.1515/cdbme-
2015-0052.

[39] J. Rahmer, J. Weizenecker, B. Gleich, and J. Borgert. Analysis of
a 3-D System Function Measured for Magnetic Particle Imaging.
IEEE Transactions on Medical Imaging, 31(6):1289–1299, 2012,
doi:10.1109/TMI.2012.2188639.

[40] J. J. Konkle, P. W. Goodwill, D. W. Hensley, R. D. Orendorff, M. Lustig,
and S. M. Conolly. A Convex Formulation for Magnetic Particle
Imaging X-Space Reconstruction. PLOS ONE, 10(10):e0140137J.
Najbauer, Ed., 2015, doi:10.1371/journal.pone.0140137.

10.18416/ijmpi.2019.1907001 © 2019 Infinite Science Publishing

https://dx.doi.org/10.18416/IJMPI.2017.1706006
https://dx.doi.org/10.1002/mp.12628
https://dx.doi.org/10.1137/141000671
https://dx.doi.org/10.21105/joss.01331
https://arxiv.org/abs/1602.06072v1
https://arxiv.org/abs/1602.06072v2
https://arxiv.org/abs/1602.06072v2
https://dx.doi.org/10.18416/IJMPI.2017.1703014
https://dx.doi.org/10.1088/0031-9155/61/11/N257
https://dx.doi.org/10.1515/cdbme-2015-0052
https://dx.doi.org/10.1515/cdbme-2015-0052
https://dx.doi.org/10.1109/TMI.2012.2188639
https://dx.doi.org/10.1371/journal.pone.0140137
https://dx.doi.org/10.18416/ijmpi.2019.1907001
https://dx.doi.org/10.18416/ijmpi.2019.1907001

	Introduction
	Overview
	Background
	High-level reconstruction
	Middle Level Reconstruction
	low-level reconstruction
	Solver
	Frequency Selection Parameters
	General Parameters
	Reconstruction Result

	Multi-Patch
	Multi-Contrast
	Matrix-Compression
	Discussion
	Conclusion

