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Abstract
This issue of the fifth volume of the International Journal on Magnetic Particle Imaging (IJMPI) comes with four
manuscripts, covering the topics of instrumentation, particle characterization, image reconstruction and stan-
dardization in the field of MPI. The manuscripts describe a novel and sensitive signal detector for magnetic fields,
an open-source software package for data processing and reconstruction, a new kind of spectrometer for particle
characterization, and a temporal polyrigid registration method for reconstructed MPI patches handling possible
motion of large objects during imaging.

Since the first publication of Magnetic Particle Imag-
ing (MPI) in 2005 by B. Gleich and J. Weizenecker [1],
different scanner designs, multiple reconstruction ap-
proaches and novel ways of particle synthesizing have
been presented [2]. One major goal of MPI is the op-
erational usability in the everyday clinical practice in
the near future. The feasibility for multiple applications,
such as vascular imaging, cancer imaging, stem cell track-
ing, pulmonary perfusion imaging, and traumatic brain
injury, could be shown on pre-clinical scale [3–7]. How-
ever, the transfer to human-scale applications requires
several improvements in hardware design, image recon-
struction and particle optimization.

In the first research paper of this issue of the fifth vol-
ume of the IJMPI, the authors describe a novel method
for the detection of MPI signals [8]. Optically pumped
atomic magnetometer (OPAM) detect the electron spin
precession in alkali-metal atoms contained in a glass
cell [9]. This allows reaching sensitivities in the sub-
femtotesla per root square hertz range [10], which is com-
parable to the sensitivity of superconducting quantum
interference devices (SQUIDs) but without the cryogen
cooling requirements. In combination with a gradiomet-

ric receive coil and a flux transformer (FT), the MPI signal
is remotely detectable. This allows on the one hand the
direct combination with low-field magnetic resonance
imaging (MRI) technology [11] and on the other hand
the usability of low-frequency MPI hardware minimizing
the risks of specific absorption rate (SAR) and peripheral
nerve stimulations (PNS) [12].

The second research paper is dedicated to a topic,
which is quite important for a young technology: stan-
dardization. After publishing the open-source MPI data
format [13], the authors describe in [14] an open-source
software package for the high-level multi-purpose pro-
gramming language Julia [15] providing an easy access
for researchers to the wide field of reconstruction ap-
proaches and algorithms used in MPI [2]. The package is
focused on system matrix reconstruction and can han-
dle single-patch, multi-patch, and multi-contrast data
(multi-color MPI) and implements matrix compression
techniques for reconstruction acceleration, which is im-
portant for near real-time visualization.

Magnetic Particle Spectroscopy (MPS) is an impor-
tant technology for the investigation and characteriza-
tion of the behavior of superparamagnetic iron-oxide
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nanoparticles (SPIONs), which serve as tracer for MPI.
Since an MPS device can be seen as a 0D MPI system [16],
the parameters given by the spectra are often not suf-
ficient to predict the performance within an MPI scan-
ner. The third research paper within this volume [17]
describes a novel 1D spectrometer providing multiple ex-
citation coils to mimic magnetic fields occurring within
MPI scanners. The Nanoparticle Characterization Sys-
tem (NCS) is able to create AC field free points, gradient
fields and multi-frequency excitation fields providing a
full range of characterization parameters of the parti-
cle system. These parameters can be used to optimize
particle synthesis as well as image reconstruction.

In the fourth research paper [18], the authors present
a solution for handling multiple drive-field patches dur-
ing the acquisition of moving objects. To overcome SAR
and PNS limitations [12], large field of views (FOV) have
been scanned in multiple steps (patch-wise) using ad-
ditional focus fields [19]. For image reconstruction, the
patches have been stitched together to create an image
of the entire FOV. Since the scanned areas have slightly
different time stamps, a simple stitching is not appli-
cable since it would lead to inconsistencies at patch
boundaries. To solve this issue, the authors proposed
a registration-based method to reconstruct a motion-
compensated image, which relies on a polygrid transfor-
mation model of the underlying object motion ensuring
temporal smoothness. With an optimized criterion for
the simultaneous estimation of reconstructed image and
underlying object motion, the system can be solved using
an alternating optimization scheme.

In conclusion, with the novel signal detector, a stan-
dardized reconstruction framework, a novel spectrom-
eter for faster optimization of particle synthesis, and a
registration method for imaging large objects with pos-
sible motion, a few more steps have been taken on the
way to clinical MPI in the near future.
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