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Abstract
Magnetic particle imaging (MPI) offers an exceptional set of advantages compared to other imaging modalities
including high sampling efficiency and sub-millimeter spatial resolution. From these two, the former is maximized
during the data acquisition using non-cartesian sampling trajectories while the latter relies on the compensation
of the point spread function of the system and the superparamagnetic iron oxide particles (SPIOs) necessary
to generate the MPI signal. The System Matrix (SM) approach for image reconstruction uses a pre-calibration
measurement and achieves both purposes simultaneously, relating the concentration of SPIOs and the true particle
response to the measured signal. Therefore, the reconstruction will be largely influenced by the quality of the
SM besides the measured image data. Moreover, considering the multitude of factors involved in the quality of
the reconstructed image, it is difficult to identify sources of image artifacts. In this work, we demonstrate the
potential to use reconstructions of individual measurements within the SM (eigen-reconstruction) as a test for both
SM and reconstruction quality. We also present an iterative algorithm to enhance image quality (deblur) using
eigen-reconstructions.

I Introduction

Magnetic particle imaging (MPI) continues establishing
itself as a powerful modality due to its set of remark-
able advantages such as high sampling efficiency and
sub-millimeter spatial resolution. In terms of sampling
efficiency, Lissajous trajectories have enabled the acqui-
sition of whole 3D volumes in e.g. ∼21 milliseconds
[1]. These trajectories often sample the volumes using
variable densities and velocities depending on spatial
location. Additionally, the superparamagnetic iron ox-
ide particles (SPIOs), necessary to generate the MPI sig-
nal, add uncertainty to the MPI measurements. Their
responses during a scan are multifactorial and difficult
to predict. Moreover, these responses expand the point
spread function, thus limiting the spatial resolution. Due
to these factors, the image reconstruction is not trivial.
One solution employed for reconstructions is the use of a

pre-calibration measurement to characterize the system.
This process uses a small delta-type sample scanned at
several discrete spatial locations, yielding the so-called
System Matrix (SM). This is a measured transfer function
that relates the measurement (image) to the object (local
SPIO concentration) [2]. Thereby, an image or a volume
can be reconstructed using linear algebra techniques
such as the Kaczmarz algorithm [3]. This approach is not
only robust, but also compensates for uneven sample
densities and velocities as well as for the SPIOs’ responses
which translates to more homogeneous and higher reso-
lution images. Consequently, the reconstructed image
strongly depends on the SM’s quality which is normally
only assessed in Fourier space [4].

Ideally, each measurement composing the SM rep-
resents a unique point in space and should be recon-
structed as a single voxel with 100 % intensity within
the field-of-view (FoV) covered by the trajectory. This
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Figure 1: Two representations of eigen-reconstructions (i =
1, λ= 0). Left: Sum of selected sample positions showing blur-
ring surrounding the center points. Right: Maximum intensity
pixel of every sample position showing higher intensities within
the area of the Lissajous trajectory with respect to the oversam-
pling area.

Figure 2: Eigen-reconstructions with different reconstruction
parameters.

should be achieved perfectly if the evaluated data has a
perfect match of signal and noise in the SM e.g. when
using the own SM measurements as image data. Devia-
tions thereof represent ill-conditions during reconstruc-
tion, translating to artifacts in the reconstructed images.
In this work, we test this hypothesis by taking sample
delta position measurements from the SM and recon-
structing them as test images. Thus, performing eigen-
reconstructions of the SM. We test varying reconstruction
parameters and identify cases where artifacts are present
as blurring. We then present an algorithm to reduce it
using information from the eigen-reconstructions.

II Material and methods

Eigen-reconstructions were performed on MPI measure-
ments available online from the project “open MPI data”
[5]. The acquisition parameters of the SM were as fol-
lows: tracer: 1 µL (0.5 mol/L) Ferucarbotran (Reso-
vist, Bayer Pharma AG, Berlin, Germany), scanner: free-
field point-based preclinical MPI system (Bruker BioSpin
MRI GmbH, Ettlingen, Germany). The acquisition pa-
rameters were: 2D Lissajous (sine frequencies x = 2.5
MHz/102, y=2.5 MHz/96) excitation with drive field (DF)
amplitude= 14 mT, gradient strength (x-= y-direction)=
1.25 T/m, averages = 1500, bandwidth = 1.25 MHz. The
SM was acquired at 1936 spatial locations using a robot
for positioning (44x44 point grid) with FoV = 44x44 mm2

(FoVDF = 22x22 mm2). Reconstruction was performed

Figure 3: Results from the proposed correction algorithm com-
pared to two different reconstructions.

Figure 4: Applying an intensity Threshold on a reconstructed
image was not equivalent to correcting with the proposed algo-
rithm using different Thresholds.

using x- and y- receive channels with an 80 kHz high-pass
filter. Positive and real signals were enforced.

We proposed a blurring correction algorithm for im-
age data using eigen-reconstructions following these
steps: 1) reconstruct an image with any parameters (in-
put), 2) find maximum intensity pixel of that image (IMAX),
3) eigen-reconstruct the corresponding location of IMAX

in the SM using the same reconstruction parameters as
the image (ISM), 4) correct intensity (IMAX / ISM) and store
as output, 5) update input using: input - ISM, 6) iterate
while IMAX > Threshold. Due to the subtraction in 5),
subsequent iterations loop over high intensity pixels else-
where in the FoV. The algorithm was tested on the mea-
surement (500 averages) of a 5-point phantom filled with
Resovist (point diameter = 1.1 mm, c = 0.5 mol/l) and
compared to standard reconstructions [5]. The Thresh-
old value during the correction was modified to show its
effect on the output image and to prove that the resulting
image is not merely equivalent to applying an intensity
threshold on the reconstructed images.

III Results and discussion

In the first eigen-reconstruction, selected measurements
in the SM corresponding to different spatially located
points along the FoV were individually reconstructed.
The sum of each reconstruction using 1 iteration (i = 1)
and no regularization (λ = 0) showed increased blur-
ring with higher signal intensity in the central points
(Fig. 1, Left). The maximum intensity pixel in each of
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the eigen-reconstructions (all measurements) showed
higher signal in the area covered by the trajectory vs. out-
side (mean ± standard deviation): 0.44 ± 0.08 vs. 0.31
± .01 (Fig. 1, Right). The intensities being below 1, rep-
resented a reconstruction artifact. Moreover, while, it
is known that signals can be detected beyond the area
covered by the trajectory [6], the ability to reconstruct the
sample in these areas could be due to the perfect noise
match (instead of signal) between the measurement and
the SM.

In Fig. 2, different parameters showed decreased
blurring using a lower λ while the signal converged to
the expected value of 1 as i increased. A virtually ideal
reconstruction was achieved when optimizing these
factors, demonstrating a potential use of the eigen-
reconstructions.

The resulting deblurred image from the proposed cor-
rection algorithm using test data from the phantom can
be observed in Fig. 3. As a comparison, the reference
image showed decreased blur compared to the input at
the expense of increased noise. On the other hand, our
algorithm filtered out the noise.

Finally, evidence is provided in Fig. 4 that the correc-
tion algorithm is not equivalent to an intensity threshold.
It can be also observed that the objects are well resolved
across a wide range of threshold values (0.1-0.5). The
evaluation of the effect and efficiency of the correction
algorithm using other test data, especially containing
more complicated structures with a mix of different con-
centrations is in the scope of our future work.

IV Conclusions
Regardless of the tested data in the eigen-reconstructions
having exact matches with measurements in the SM,
some reconstruction parameters yielded output images
with inhomogeneous intensities and blurring. Both
issues were diminished with parameter optimization.
Thus, the potential use of eigen-reconstructions was
demonstrated as a testing tool during the reconstruc-

tion process. Moreover, these image artifacts present in
the eigen-reconstructions are also expected in the test
data. Our proposed algorithm decreased blurring, which
suggests that the blur in the SM correlate with the blur
of the image data and it can be compensated. We expect
the use of eigen-reconstructions to be adopted and used
routinely as additional tool to ensure SM and reconstruc-
tion quality, and to potentially compensate for added
blur during the reconstruction.
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