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Abstract
In magnetic fluid hyperthermia (MFH), Magnetic Nanoparticles (MNPs) dissipate heat when exposed to alternating
magnetic fields (AMF). MFH is used for targeted energy deposition for targeted drug-delivery or cancer therapy.
To avoid heat deposition in all areas with high particle concentration, a gradient field featuring a field-free area
(FFR) can be utilized to isolate heating a target region. In this work, we present preliminary results with a localized
hyperthermia system, HYPER, that features a mechanically actuated gradient that enables adjusting the heating
region’s size and position. The size of the heating region in our prototype is verified by measuring the full width
at half maximum (FWHM) of the specific absorption rate (SAR) point spread function (PSF) and compared to a
theoretical heating model (1).

I Introduction

Magnetic Fluid Hyperthermia (MFH) has been used for
diverse applications that include treating prostate can-
cer [2], [3], treating brain cancer [4], and controlled drug
delivery applications [5]. Typically, MFH in biological
applications exposes Magnetic Nanoparticles (MNPs) to
strong (>10 mT), rapid (>150 kHz) alternating magnetic
fields (AMFs) that causes the MNPs to dissipate heat.
Typically, the AMF is generated by an RF coil, known as
a work coil, that is sized to the body part being treated,
or in preclinical work, surrounds the entire animal. Be-
cause all MNPs within the work coil are heated by the
AMF, significant off-target MNP heating in the liver and
other tissues can occur. This off-target heating can cause
unintended effects such as heating the liver or releasing
drugs off-target.

Recently, it has been shown that the same gradient
fields used in magnetic particle imaging can be used to
restrict heating to a small region [6], [7]. In this novel
MFH approach, MNPs at the FFR are free to rotate and
absorb energy, while MNPs away from the FFR are effec-

tively magnetically “locked,” and absorb no more heat
than normal tissue.

In this abstract, we present a novel localized hyper-
thermia system, HYPER, that is suited for small-animal
studies. The system featuring mechanically adjustable
permanent magnets for both positioning and changing
the size of the FFR during heating. The variable gradient
enables targeting different treatment region positions
and sizes without compromising the surrounding tissue.
For example, with a stronger gradient, precise drug re-
lease can be accomplished, while weaker gradients can
offer whole body MFH applications.

II Material and methods

Here we estimate the Specific Absorption Rate (SAR) us-
ing a theoretical model, detail the hyperthermia proto-
type setup, perform heating experiments, and compare
our heating experiments with our theoretical model.
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II.I Theoretical Energy Dissipation
Model

Simulation results in this work are based on models pre-
sented by Soto-Aquino et al. from [1]. The following
section summarizes their primary results.

The rate of energy dissipation is often described as
the product of magnetic field and magnetization

Q =µ0

∫ 2p

0

H
d M

d t
d t . (1)

If the sinusoidal magnetic field and magnetization are
collinear, (1) can be expanded to the mean rate of energy
dissipation

[Q ] =
µ0H0Ω

2p

∫ 2p

0

M sin(Ωt )d t . (2)

Here, H0 is the magnetic field amplitude,Ω the excitation
radian frequency and p = π/Ω. We can also introduce
dimensionless variables M̃ = M /MS , Ω̃ = Ωτ, t̃ = t /τ
and p̃ =π/Ωτ to simplify the equation
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[Q ] can be represented as specific absorption rate (SAR)

SAR=
[Q ]
φρ

(4)

withφ being the particle volume fraction and ρ the par-
ticle density.

We numerically obtain the magnetization M̃ by
solving the magnetization relaxation equation of Mart-
senyuk, Raikher, and Shliomis [1]
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WithL −1(λ) being the Padé approximant to the inverse
Langevin function [8]

L −1(λ) =λ
3−λ2

1−λ2
(6)

and a the Langevin parameter

a =
πµ0d 3Ms H

6kB T
. (7)

Equation (5) was implemented in Python and solved nu-
merically with the LSODA solver.

II.II Localized hyperthermia prototype
Our hyperthermia prototype uses mechanical movement
to adjust the position and size of the FFR in relation to the

Figure 1: The FFR is generated between two permanent mag-
nets. Both can be individually moved in x-direction to change
the gradient strength. A solenoid generates a sinusoidal field
at 339 kHz with 14 mT field amplitude.

sample. Two permanent magnets with opposing mag-
netization direction generate an FFR (see Fig. 1). Each
magnet’s position is individually adjustable and hence it
is possible to vary the gradient strength between 0.6 T/m
and 2.4 T/m (x-direction) and shift the FFR from left to
right. To shift up and down, both magnets can be moved
vertically. The sample is moved in the z- direction. The
AMF is generated by a stationary water-cooled solenoid
that is matched to 339 kHz. A maximum field amplitude
of 14 mT is achieved.

II.III Heating experiments and data
analysis

All measurements were performed with 100 uL
synomag®-D (50 nm , 25 mg/mL , 104-00-501, mi-
cromod Partikeltechnologie GmbH) filled in a 200
uL PCR tube. The temperature was acquired with a
fiberoptic temperature sensor (TS5-20MM-02 and
FOTEMP1-OEM-MNT, Micronor). The PCR tube was
moved through the FFR with a step size of 5 mm. An
AMF was applied for 10 s.

The acquired temperature data was analyzed by iden-
tifying the linear loss regime of the temperature curve
and applying a linear fit (∆T /∆t ) [9]. SAR can be calcu-
lated with:

SAR=
C

m

∆T

∆t
(8)

where C is the heat capacity of water (4.18 J/gK) and m
the mass of the sample.

III Results and discussion

A maximum SAR of 148 W/g was achieved for the speci-
fied experiment. Fig 2. shows the measured and simu-
lated SAR PSF for 0.6 T/m as well as 1.8 T/m. At 0.6 T/m,
a FWHM of 46.2 mm is achieved. At 1.8 T/m, the FWHM
is reduced to 17.4 mm. The simulated SAR profile agrees
well with experimental results.
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Figure 2: Simulated and measured SAR PSF for synomag®-D
with 50 nm hydrodynamic diameter.

IV Conclusions
Here, we presented first results for a localized hyperther-
mia platform, HYPER, that features a mechanically vari-
able gradient to allow power efficient matching the FFR
to the treatment region. Experimental results match the
theoretical particle model, and show good agreement
between measured SAR values and literature [10]. In the
future, we aim to integrate our hyperthermia system into
a combined imaging and treatment workflow with the
MOMENTUM™ Imager. First, MNP distributions will
be determined with MOMENTUM™ and then, selective
heating can be applied with HYPER.
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