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Abstract
Multi-contrast magnetic particle imaging (MPI) enables the determination of different contrasts in addition to
the particle concentration. For instance it is possible to discriminate multiple tracer types that differ e.g. in the
particle core size. One challenge of multi-contrast MPI is that the reconstruction problem is severely ill-posed such
that in practice a perfect separation of different tracer types is not achieved. In this work, we develop a method
for improving the channel separation and in turn prevent leakage from one channel into the other. Our approach
exploits sparsity in both the spatial and the channel dimension. By developing a tailor regularization approach for
improved multi-contrast reconstruction, we show that it is possible to significantly reduce signal leakage.

I Introduction

Multi-contrast magnetic particle imaging (MPI) [1] is a
reconstruction method that allows to determine not only
the concentration of the imaged magnetic nanoparticles
but in addition functional parameters such as the their
temperature [2] and the viscosity of their environment
[3]. Moreover, it allows for tracer distinction based on
the nanoparticles core size distribution [4]. The multi-
contrast reconstruction problem is severely ill-posed be-
cause a change of the functional parameter will usually
affect the induced voltage signal only marginally. For
this reason it is essential to apply proper regularization
techniques in order to compute a stable solution for a
noisy measurement. To date, only L2-type regularization
has been applied for multi-contrast MPI, which typically
leads to a blurring in space but also a blurring in direc-
tion of the functional parameter. This is also referred to a
ghosting or channel leakage artifacts [5]. The purpose of
the present work is to establish an L1-type regularization
approach that has the goal to significantly reduced chan-

nel leakage by promoting sparsity in both the spatial and
channel dimension.

II Material and methods

The forward problem for multi-contrast MPI is given by

v =
n
∑

i=1

Si ci = S c , (1)

where Si denotes the system matrix of tracer i , ci denotes
the concentration of tracer i and v is the measured signal.
The state-of the art reconstruction is Tikhonov regular-
ization with an L2 penalty, i.e. to solve the minimization
problem

min
c≥0

1

2
||S c − v ||22+

λ

2
||c ||22 . (2)
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Figure 1: Phantom with dot samples of two different particle
types S (core diameter 21.9 nm) and M (core diameter 25.3 nm).

II.I Regularization for multi-contrast
MPI

The channel leakage is characterized by reconstructed
concentrations in the wrong channel which are low com-
pared to the correctly assigned concentration. This ob-
servation motivates sparsity promoting regularization,
i.e. to minimize the Tikhonov-functional with L1 instead
of the standard L2 penalty. Thus, we have to solve

min
c≥0

1

2
||S c − v ||22+λ||c ||1 . (3)

Tikhonov regularization with sparsity constraints is
moreover known to reduce noise in the reconstruction.
The second approach aims to further reduce leakage by
exploiting the fact that MPI images are typically sparse in
space. Therefore, we first compute a solution by sparsity
regularization. To this end, we use a threshold µ to de-
termine the spatial support of the image and keep only
those columns in the combined system matrix S that are
located in the support. We then apply again the spar-
sity regularization on the reduced system by keeping all
parameters fixed. We refer to this approach as matrix
manipulation with sparsity regularization.

II.II Experimental Setup
The proposed reconstruction algorithm is evaluated us-
ing the data acquired and used in [3]. It was measured
with two different particle types with a core diameter of
21.9 nm (S) and 25.3 nm (M), see Figure 1. For each of the
particle types a dedicated system matrix for a 2D imaging
sequence was acquired (grid size: 24 x 24 with 1 mm x
1 mm x 1 mm voxel size). Then, a phantom consisting
of two dot samples (concentration 0.9g/L iron) located
in the field of view was prepared and measured with the
same imaging sequence as used for calibration.

III Results
The reconstruction results for the channel S (left col-
umn) and M (right column) computed by Tikhonov-
regularization, Tikhonov with L1 penalty as well as matrix

Figure 2: Multi-contrast reconstructions for the channel S (left
column) and channel M (right column) computed by classical
Tikhonov regularization (first row), L1 regularization (second
row) and matrix manipulation with sparse regularization (last
row).

manipulation with sparse regularization are shown in
Figure 2. We used Kaczmarz iteration to compute the
minimizer of the Tikhonov functional (2) and ADMM ap-
proach for solving the minimization problem (3). We de-
termined for all three approaches the optimal regulariza-
tion parameter by visual inspection. The reconstructions
in the first row obtained by the classical Tikhonov regular-
ization with λ= 0.002 are noisy and concentrations are
assigned partly in the wrong channels. The reconstruc-
tions obtained by regularization with sparsity constraints
andλ= 0.008 are sparse and noise is reduced as expected,
see second row of Figure 2. Compared to the results for
classical Tikhonov regularization, there is less leakage
into wrong channels although there is still some wrong
signal in the channel M. Finally, compared to the recon-
structions computed by sparsity regularization, the re-
constructions in the third row computed with the matrix
manipulation approach and parameters λ= 0.008 and
µ = 0.98 are further improved: the leakage into wrong
channels is completely suppressed. Moreover, if the val-
ues of neighbored pixels belonging to the same phantom
are summed up, the reconstructed concentration values
in the second and third row are close to each other.
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IV Discussion and Conclusions
In this work, we proposed tailored regularization meth-
ods for multi-contrast MPI, which are able to significantly
reduce channel leakage artifacts. The results show that
an L1 prior in channel direction is effective to suppress
the channel leakage. We note, however, that this prior
should be applied if it is a-priori known that a voxel con-
tains one of the two tracers only. A typical example for
this would be a catheter labeled with a specific tracer that
is distinct from a blood-pool tracer, which it displaces
inside the vessel.

One general challenge with multi-spectral MPI recon-
struction is that the number of unknowns grows with
the number of channels while the number of equations
in the imaging equation remains constant. Thus, with
increasing number of channels the conditioning of the
reconstruction problem gets worse. Our proposal to han-
dle this is to reduce the number of unknowns by remov-
ing those pixels where no particles are present. This de-
creases the conditioning of the reconstruction problem.
The results show that this improves the reconstruction
quality considerably.

We used in this work an L1 penalty to estimate the
support of the particle signal. This has the downside that
the L1 prior penalized non-sparse solutions which will
not give a good estimate of the support in case of larger
volumes covered by particles, as for instance it will be the

case in organ perfusion. In future work, it is therefore an
interesting question how to derive the support without
promoting sparsity, e.g. by using a Wavelet sparsifying
transform.
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