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Abstract
One approach of image reconstruction in MPI is the system matrix based reconstruction. With this approach, in
addition to the particle behavior, the sequence and the scanner properties are also calibrated and stored in a system
matrix, so that a linear system of equations for the image reconstruction must be solved. However, the measurement
of the system matrix is very time-consuming, depending on the desired spatial resolution. Independently of this,
there are some remarkable symmetries within the system matrix that could be exploited to significantly reduce
the calibration time. In the context of this work the theoretical description of a system matrix about Chebyshev
polynomials is used to completely build a 3D system matrix by mirroring an octant and to successfully reconstruct
an image.

I Introduction

The state of the art for image reconstruction of MPI data
acquired using a Lissajous based trajectory require a cal-
ibrated system matrix. This matrix contains all informa-
tion about the used scanner, sequence and tracer mate-
rial [1]. Depending on the number of measured spatial
positions during the calibration, the acquisition is highly
time consuming. For example, the acquisition of a sys-
tem matrix on a 37 x 37 x 37 grid, which is part of the
Open MPI dataset [2], took about 33h. The reduction of
this time is highly relevant, since the acquisition of such
a matrix is necessary for each nanoparticle type and each
change during the scanning procedure. Furthermore, a
scanner cannot be permanently blocked just for record-
ing system matrices. One way to reduce the calibration
time is to use the structural symmetries of the frequency
patterns of a system matrix. In [3] a formula has been
presented to mirror 2D system matrices and to reduce
the number of needed calibration positions. In this work,

we propose an alternative way based on the mixing order
theory, which is also applicable for 3D system matrices.

II Material and methods

In previous works, the theory of the structure of a system
matrix has already been applied. The theory is that the
frequency components correspond to weighted Cheby-
shev polynomials of the 2nd kind, which encode the
spatial distribution over a tensor product of the one-
dimensional polynomials [1,4]. The Chebyshev polyno-
mials are given as symmetric oscillating functions. These
symmetries can also be observed in the frequency com-
ponents as well. In Fig. 1 exemplary, a frequency com-
ponent is shown to visualize the symmetries. Since a
system matrix is complex, the data can be considered
as magnitude and phase. In the shown layer horizontal
and vertical symmetry is visible. It is particularly impor-
tant to note that the correct determination of the center
for the mirroring approach is crucial. This is particu-
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larly problematic for robot-based calibration, since ev-
erything must be accurate, whereas during field-based
calibration [5] this problem can only occur to a limited
extent.

Since each frequency component can be described
by a theoretical mixture of 3 Chebyshev polynomials,
they can also be used for symmetry. In general, each
frequency component is given as

fk = |mx · fx +my · fy +mz · fz | ,

where mx , my , mz ∈ Z is the harmonic of the fx , fy , fz

frequencies. For the correct phase during mirroring, a
factor (−1)si is multiplied globally on the mirrored part.
Here, si , i ∈ x , y , z is receive channel dependent com-
parable to the findings in [6]. Each si can be calculated
by
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, i ∈ x , y , z .

Note, that the possible spatially dependent relaxation
effects, which could additionally influence the phase,
were neglected. For our experiments, we used the Open
MPI dataset. We showed the applicability of the mirror-
ing approach on a 37 x 37 x 37 system matrix and the
reconstruction of a resolution phantom. Both are explic-
itly described in [2] and the datasets can be downloaded
there as well. For the examination of the mirroring we
used a single octant of the system matrix marked in Fig.
1 and proceeded according to the described instruction
after the mirroring by a phase change. In the lower part
of Fig. 1, the frequency component generated from one
octant of the original system matrix is shown.

III Results and discussion
To verify how similar the original and the mirrored sys-
tem matrix are, we calculated the NRMSE for each fre-
quency component. On the one hand, the absolute val-
ues only were compared and on the other hand, the com-
plex frequency components were compared. The result
is shown in Fig. 2 where we assigned the error to the SNR
of the frequency components.

For orientation, the component shown in Fig. 1 had
an SNR of about 24 and an NRMSE of 7 %. It should be
noted that the error regarding the phase is greater than
the absolute value only for all frequency components.
The absolute value gives us an indication of the symmetry
of the individual components, so that after subtracting
the phase-including error from the absolute value, the
frequencies are nearly phase accurate, which is necessary
for a successful reconstruction. Furthermore, for small

Figure 1: Comparison of the original (top) and of the mir-
rored (bottom) system matrix for one exemplary frequency
component. Left the absolute value and right the phase of the
frequency component are shown. Additionally, the top left
marked corner in the mirrored system matrix represent the
used octant for mirroring.

Figure 2: Boxplot of the NRMSE between the original and the
mirrored system matrix sorted by SNR. On the left side, the
calculated error contains the absolute value and the phase.
On the right side, only the absolute values of each frequency
components were compared.

SNR values the error becomes very large, which is due to
the fact that noise is not necessarily symmetric. As the
SNR increases, the error also decreases.

To judge the impact on the image quality after re-
construction, we used the resolution phantom from the
Open MPI datasets [2]. The reconstructed images are
shown in Fig 3. For the reconstruction, only frequency
components with an SNR greater than 3 were used, which
is a common approach to neglect the noisy frequency
components during reconstruction. Note that in Fig. 3
only one layer from the 3D dataset is shown. The recon-
structed images are very similar, which is also confirmed
by an NRMSE of the whole 3D volume of 3.6 %. Looking
more closely at the images, small deviations are notice-
able, which can also be traced back to the not yet ideal
center finding and/or the neglected spatially dependent
relaxation effects. A precise determination of the center
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Figure 3: Reconstruction results using the original (a) and the
mirrored system matrix (b).

is critical for the method, so that in the future even finer
grids should be used and an accurate center determina-
tion must be performed.

IV Conclusions
In summary, a simple method was presented how 3D
system matrices can be mirrored, saving up to 87.5 %
of the calibration time. The time-savings can thus be
used to measure a system matrix on a finer grid and/or
with a higher averaging. In addition to mirroring within
a system matrix, the approach can also be applied to
multipatch data to reduce the number of system matri-
ces to be explicitly acquired. Assuming that the field
imperfections within the scanner are symmetrical, a sys-
tem matrix with a corner in the scanner center would be

sufficient to approximate the remaining seven system
matrices.
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