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Abstract
In a recent publication, based on the Langevin model, the exact mathematical relationship between the system
function and tensor products of Chebyshev polynomials of second kind has been derived for the case in which
multidimensional excitation is used for magnetic particle imaging. There, a new expression for the system function
in magnetic particle imaging was derived. To make this representation easily accessible, the present paper focusses
on the more practical aspects of the theory without going deep into the mathematical proofs. In particular, we
examine the contribution of the mixing factors to the total energy of a system function component.

I Introduction

The mathematical formulation in magnetic particle
imaging (MPI) has been subject to intensive research
for several years. An overview of different models can be
found in [1]. However, also for fairly simplified models,
such as the Langevin function for describing the magne-
tization curve of superparamagnetic iron-oxide nanopar-
ticles (SPIOs) as a function of an external magnetic field,
many observations are not fully understood. A famous
example is the observed relationship between tensor
products of Chebyshev polynomials of second kind and
the frequency components of the system function along
the spatial dimension for two- [2] and three-dimensional
[3] field-free point (FFP) trajectories of Lissajous type.
The assumption is not a coincidence, since it was shown
in [2] that for a one-dimensional FFP-trajectory the fre-
quency components actually correspond to a convolu-
tion between the spatial derivative of the magnetization
curve and weighted Chebyshev polynomials of second
kind. Although this relationship is generally considered
and successfully applied in practice, it has not yet been
proven. Recently, we found an exact relationship be-
tween Chebyshev polynomials of second kind and the

system function in terms of a series expansion [4]. How-
ever, as the series has infinite number of terms, it is not
immediately clear how many terms contribute signifi-
cantly to the sum. This publication summarizes the re-
sults of [4] and tries to find out how many series terms in
the new two-dimensional MPI formulations are relevant.

II Known relationships

The used magnetic field in MPI is a superposition of
the time-varying drive-field HD (t ) and the static gra-
dient field HS (x ). If the gradient field is homogenous,
HS (x ) can be described by HS (x ) = Gx, where G de-
notes the applied gradient strength and it is assumed
to be diagonal with G = diag(g1, g2, g3). The drive-field
is usually chosen as periodic trajectory HD (t ) with pe-
riod length TD , and for the position of the FFP we obtain
xFFP(t ) =−G(−1)HD (t ). The voltage signal ul (t ) in MPI
can be represented by

ul (t ) =

∫

R3

sl (x, t )c (x)d x (1)
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with

sl (x, t ) =µ0pl

∂

∂ t

�

mL (β ||G(xFFP(t )−x)||2)
g l (x FFP

l (t )− xl )
||G(xFFP(t )−x)||2

�

=µ0pl
∂

∂ t

�

mLl (βG(xFFP(t )−x))
�

, (2)

where sl (x, t ) (l ∈ {1,2,3}) denotes the spatial and time
depending system function, the factor β reads β = µ0m

kB T
with µ0 being the vacuum permeability, pl is the induc-
tivity of the l -th receive coil, x FFP

l (t ) denotes the l -th
coordinate of the FFP, xl is the l -th spatial coordinate, m
means the magnetic moment of one nanoparticle, c (x)
is the spatial SPIO distribution, kB is the Boltzmann con-
stant, T is the temperature of the SPIOs,L (x ) denotes
the Langevin function and is used to describe the magne-
tization behavior of the SPIOs as a function of an external
magnetic field, andLl (x) =L (||x||2)

xl
||x||2 denotes the mul-

tidimensional Langevin function with respect to the l -th
receive coil.

Alternatively, it is also common to write the system
equation in the form of temporal Fourier series compo-
nents

ũl k =

∫

R3

s̃l k (x)c (x)d x , (3)

with

s̃l k (x) =
1

TD

∫

TD
2

− TD
2

sl

�

TD

2
, t
�

e −iωk t d t , (4)

whereωk = 2πk fD and fD =
1

TD
.

III Fourier domain formulation
of MPI

In [4], Theorem 3.1 is the most general result, which
shows that the system equation of MPI can be repre-
sented in the spatio-temporal Fourier domain by

ũl k =
ωkµ0pl i

(2π)3

∫

R3

ĉ (ωx)
mL̂l

�

G−1ωx
β

�

|det(βG)|
P (ωx, k )dωx , (5)

where ĉ (ωx) and L̂l (ωx) denote the spatial 3D Fourier
transform of the particle distribution and the Langevin
function, respectively. The function

P (ωx, k ) =
1

2π

∫ π

−π
e iωx

T xFFP
�

z
2π fD

�

e −i k z d z (6)

maps the spatial frequencies to temporal ones and can
be evaluated for general xFFP(t ). Recently, we found out
that the function appears to be related to the theory of
generalized Bessel functions [5,6].

IV 2D FFP Lissajous trajectory

In [4] we show that the system function for a 2D FFP-
trajectory of the form

xFFP(t ) =
�

a1

g1
sin

�

2π f1t
�

,
a2

g2
sin

�

2π f2t
�

, 0
�T

, (7)

with f1 =
fB

NB
, f2 =

fB
NB−1 , NB ∈ N, and the period length

TD =
NB (NB−1)

fB
can be represented by

s̃l k (x1, x2) =
∑

λ∈Z

(−1)λ+1ωkµ0pl msgn(a1g1)sgn(a2g2)
π2

∫

R2





∂ 2

∂ z1∂ z2
Ll



βG





z1

z2

0













z1 = x1−u1

z2 = x2−u2

V−k+λNB

�

g1

a1
u1

�

Vk−λ(NB−1)

�

g2

a2
u2

�

d u1d u2 ,

(8)

with

Vn (x ) =

¨

rect
�

x
2

�

�

−U|n |−1(x )
p

1−x 2

|n |

�

if |n |> 0
π
2 sgn(x +1)− rect

�

x
2

�

cos−1(x ) if n = 0 ,
(9)

where Un (x ) denotes the Chebyshev polynomials of sec-
ond kind with order n . This result shows that the system
function in MPI can be represented as tensor product of
Vn (x ) convolved with a spatial derivative of the Langevin
function. In contrast to the one-dimensional scenario we
have an infinite series over tensor products. Fortunately,
only a few series terms will make significant contribution.
The exact number of important series terms depends on
the parameter setting.

V Material and methods

To demonstrate how many terms in the series (8) are rel-
evant, we have simulated the system function s̃l k (x1, x2)
with the parameters given in [4] except for the particle
diameter. The particle diameters were 30 nm and 40 nm.
For k ∈Z, the mixing order [2]was minimized by

λ∗(k ) = argminλ∈Z|k −λ(NB −1)|+ |k −λNB | , (10)

because it was assumed that the most relevant terms in
(8) are near toλ=λ∗(k ). In the experiment NB was 32. To
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identify the relevant contributing terms in (8), we derive

tv k (x1, x2) =
ωkµ0pl m

π2

∫

R2





∂ 2

∂ z1∂ z2
Ll



βG





z1

z2

0













z1 = x1−u1

z2 = x2−u2

V−k+(v+λ∗(k ))NB

�

g1

a1
u1

�

Vk−(v+λ∗(k ))(NB−1)

�

g2

a2
u2

�

d u1d u2 , (11)

for different v, k ∈Z, followed by the calculation of the
ratios between the energies of (11) and (8):

relEngl (v, k ) =
||tv k ||2L2

||s̃l k ||2L2

. (12)

VI Results and discussion
In Fig. 1 we show the color-coded representations of
(12) for the x-receive channel (l = 1) in the upper row
with k ∈ {1,2, . . . ,2500} and in the lower row with k ∈
{1,2, . . . ,100}. The color coding is in dB scale and trun-
cated to the range -100 to 0 dB. In the left column, the
particle diameter is 30 nm, while in the right column, it
is 40 nm. It can be observed that with increasing particle
diameter more terms in (11) contribute to (8). Interest-
ingly, for k > 1500 the λ∗ calculated with (10) is no longer
optimal for the first receive channel. In this case, v = 1
contributes mainly to the series in (8). In the detail zoom
(lower rows) it is obvious that the number of contributing
terms in (8) becomes small when k is an integer multiple
of NB −1= 31. It should be noted that with increasing k
more terms contribute to the total energy. For all particle
diameters tested here, however, an exponential decrease
as function of v can be observed, which shows that usu-
ally only one or two terms of (11) contribute to the total
energy of (8).

VII Conclusions
We have summarized the new Fourier based MPI formu-
lation and used the new results to examine how many

Figure 1: The color coding shows the relative energy contribu-
tion (12) of the terms in (11) relative to the energy of the system
function component in (8) as function of v and k .

series terms in (8) are relevant. We used the minimal mix-
ing order strategy (10) to identify important components.
In (10) for large k we observed a deviation for our opti-
mization strategy, which should be investigated further
in future.
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