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Abstract
4D Magnetic Particle Imaging (MPI) reconstructions with high temporal resolution are of high relevance for diag-
nostic purposes. In multi-patch measurements the data for single patches is not continuous. During the scan of
one patch no data is acquired for the remaining patches. This impedes regularization by similarity of subsequent
frames. We propose a method that models the dynamic tracer concentration with cubic B-splines which allows
for reconstructions with high temporal resolution from only few frames. The time-dependent formulation of the
concentration leads to a new formula for modeling the system matrix.

I Introduction
The purpose of magnetic particle imaging is the visual-
ization of the tracer concentration in specific organs or
vessels. Thus, images with high gradients or discontinu-
ities at organ boundaries are expected. Describing the
tracer concentration by a function c it is discontinuous
in space. Furthermore, in a medical setting the tracer
cannot appear instantaneously. It accumulates, is dissi-
pated or flows through a volume covered by one voxel.
Thus, the function c is continuously differentiable in
time.

For MPI scans with multiple patches there are gaps
in time for single patches (see Fig. 1). In between each
scanning period of a patch there is at least a time span of
T ·(P−1) in which the other patches are scanned, where T
is the scanning time for one patch and P is the number of
patches. This makes the similarity of subsequent frames
less attractive as a regularization method. Furthermore,
patches of the same frame are scanned at different time
points which can cause artifacts. An example is shown
in Fig. 2A.

In this paper we model the dynamic tracer concen-
tration as a cubic B-spline curve in time for each voxel

to gain continuously differentiable reconstruction from
a low number of scanned frames, to approximate the
missing data for multiple patches and to reduce patch
artifacts.

II Methods
The MPI forward problem in time can be written as

u (t ) =
d

d t

∫

Ω

m̄ (r, t )c (r, t )d r 3 . (1)

This holds true under the assumption that the signal gen-
erated by the excitation field is filtered out completely
and leaving out the permeability constant and coil sensi-
tivity as it is also assumed to be constant [2]. In contrast
to most literature [2], [3], [4], [5], since we are looking at
dynamic tracer concentrations, in this paper the concen-
tration c is considered to be time-dependent and its time
derivative to be nonzero so that the forward problem can
be described by

u (t ) =

∫

Ω

d m̄

d t
(r, t )c (r, t ) + m̄ (r, t )

d c

d t
(r, t )d r 3 . (2)
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Figure 1: Scheme for scanning multiple patches. The mea-
sured voltage u (t ) is a concatenation of the measurements of
all patches for each frame.

A B

Figure 2: (A) Artifacts in multi-patch reconstruction for a phan-
tom with linear motion in x. The two patches are scanned at
different time points although they belong to the same frame.
The outlines of the phantom at this time point are indicated by
the dashed box. (B) Structure of the computational phantom
with two patches and linear motion.

In [1] the authors deal with the dynamic inverse problem
of gated cardiac SPECT (Single-photon emission com-
puted tomography) reconstruction. In cardiac gating the
periodic motion of the heart is divided into intervals, the
so-called gates. They are interested in the decay of the
radioactive tracer over time for each gate respectively.
To achieve this they model the tracer concentration by
cubic B-splines in time for each voxel. Based on this we
model the particle concentration as

cp (r, t ) =
∑

m∈Mp

bm (r )Bm (t ) , (3)

where p is the patch index, bm are the control points and
Bm are cubic B-splines. As we limit the reconstructed
concentrations to those representable as spline curves
this provides an implicit regularization. If the knots are
chosen accordingly, this approach ensures differentiabil-
ity in time, even for the periods without data for single
patches. Discontinuity in space is still possible as there
is a specific set of control points for each voxel.

We need to minimize the problem

∑

p=1

P
nT
∑

i=1

||
R
∑

j=1

d m̄

d t
(r j , ti )cp (r j , ti )

+ m̄ (r j , ti )
d cp

d t
(r j , ti )−up (ti )||22 (4)

with cp defined as in (3) with respect to the set of all
control points bm . It can be minimized by a gradient
descent or more advanced methods.

Figure 3: Patch 1 of a phantom with dynamic concentration.
The curves show the development of the concentration in voxel
ri , i ∈ 1, . . . , 9 in time.

Figure 4: Reconstruction of patch 1 with the proposed method.
Each curve shows the development of one voxel r in time.

III Results

The method was validated in a phantom study. The com-
putational phantom has two patches which are aligned
in y direction. Each patch consists of 3x3x1 voxels. The
concentration moves nearly linear in positive x direction.
The motion happens in parallel on both sides of the patch
border (Fig.2 B). The concentration is modeled by spline
curves. The development in time for each voxel of patch
1 can be seen in Fig. 3.

A scan with four frames was simulated. The system
matrix was computed and the Lissajous trajectory was
evaluated at 408 time points. The knots for the base
splines are uniformly distributed in the sense that there
are M0 = 5 uniformly distributed knots in each scanning
interval of the patch.

Additionally, there are quadruple knots at the begin-
ning and end of the total scan time to allow discontinu-
ities at these time points.

Problem (4) was solved with a gradient descent and
an Armijo-type line search algorithm. The results can be
seen in Fig. 4. The reconstruction is quite slow but results
in reconstructions with a high temporal resolution. The
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Figure 5: Reconstruction of patch 1 with the Kaczmarz method.
The curves show the development of the concentration in voxel
ri , i ∈ 1, . . . , 9 in time.

Figure 6: Phantom (left), spline based reconstruction (center)
and frame-by-frame Kaczmarz reconstruction (right) shown at
approximately the same time point.

development of the curves matches the ground truth
quite well. Since the set of splines is slightly different the
reconstruction cannot be exactly equal to the phantom.

For comparison the four frames were also recon-
structed separately with the Kaczmarz algorithm. The
results can be seen in Fig. 5. This reconstruction is more
than twice as fast but has significantly lower temporal

resolution. The reconstruction suffers from patch arti-
facts similar to the ones shown in Fig. 2A. Fig. 6 shows the
phantom, the novel reconstruction method and the Kacz-
marz approach at approximately the same time point.

IV Discussion
The introduced method is able to reconstruct dynamic
tracer concentrations which are continuously differen-
tiable in time and discontinuous in space with a high tem-
poral resolution using measurements with a low number
of scanned frames. It reduces artifacts caused by the
subsequent scanning of patches by approximating the
missing data.

For further improvement additional regularization
terms and faster minimization algorithms can be added
to speed up the reconstruction and to increase the quality
of the reconstructions further. E.g. spatial sparsity can be
enforced by a total variation term or mass conservation
at patch borders. Depending on the regularization terms
the problem can be solved by primal-dual algorithms.
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