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Abstract
In magnetic particle imaging, many applications require the time consuming measurement of a system matrix before
image reconstruction. Reduction of measurement time can be achieved with the help of compressed sensing, which
is based on the sparsity of the system matrix in a suitable transform domain. In this work, we propose regularization
functions to exploit the additional correlations in multi-patch system matrices. Experiments show that the resulting
recovery method allows successful matrix recovery at higher undersampling factors than a standard compressed
sensing recovery.

I Introduction
Magnetic particle imaging (MPI) is a radiation-free imag-
ing method, which allows imaging the distribution of
magnetic nanoparticles at both high spatial and high
temporal resolution [1]. Most acquisition schemes in
MPI require the measurement of a system matrix before
image reconstruction can take place. For 3d imaging ex-
periments such measurements can take multiple days,
which is impractical for many applications. Moreover,
the scanner needs to be kept stable during the measure-
ment. Depending on the scanner architecture this poses
a challenge yet to be solved.

The scan time for this calibration can be significantly
reduced by using compressed sensing techniques (CS)
[2,3,4]. The latter exploit the fact that the rows of the
system matrix become sparse after applying transforma-
tions such as a fast Fourier transform or a discrete cosine
transform (DCT). In combination with an incoherent
sampling pattern, CS allows to recover a complete sys-
tem matrix from a highly undersampled measurement.

In this work, we investigate the use of CS for the re-
covery of multi-patch system matrices. The latter play an

important role in MPI as they allow increasing the field
of view (FOV) without incurring peripheral nerve stim-
ulation. Based on the similarity of multi-patch system
matrices, we propose regularization functions to exploit
inter-patch correlations. Our results show that the pro-
posed algorithm allows successful recovery at higher un-
dersampling factors, when compared to existing single-
patch CS methods.

II Material and methods

II.I Properties of multi-patch system
matrices

In the following, let ŝk ∈ Cnv×np denote the k t h fre-
quency component of a multi-patch system matrix. Here,
nv denotes the number of voxels measured on a d -
dimensional grid and np denotes the number of patches.
One then finds that for all patches, the patterns in ŝk

have a very similar structure. In Fig. 1, this can be seen
for four exemplary patches of a system matrix measured
with the MPI brain imager presented in [5]. When ap-
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Figure 1: Multiple patches of the 8th frequency component of
the measured system matrix. Shown are the patches 20, 30, 40
and 50.

plying a DCT to the patterns, one observes that the DCT
coefficients have similar values at the same respective
position. In order to recover signals with that character-
istic, joint-sparsity regularization based on the l2,1-norm
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is a common tool.
Moreover, we observe that ŝk can be represented as

a tensor of order (d +1)with low multi-rank. Here, the
multi-rank refers to the size of the core-tensor in the
higher-order singular value decomposition (HOSVD) of
ŝk . This is a generalization of the results presented in [6].
To recover signals with such a structure, one can use a
generalized nuclear norm ||ŝk ||∗, which corresponds to
the l1-norm applied to the elements of the core tensor of
the HOSVD.

II.II Matrix recovery

Based on aforementioned observations, we formulate
the following problem for the recovery of multi-patch
system matrices

argminŝk
||yk −P ŝk ||22+λs p ||Φŝk ||2,1+λl r ||ŝk ||∗ . (2)

Here yk contains the measured points for the k t h fre-
quency component and P denotes the corresponding
sampling pattern. Φ is a block-diagonal operator, apply-
ing a type-II DCT to each patch. For solving problem (2)
we use the Split-Bregman method [7].

II.III Validation on a measured system
matrix

To validate the proposed method, we use a system matrix
measured on a 28x28 grid with a FOV of 140x140 mm2

and 130 patches. The system matrix was measured with a
5x5x10 mm3 sized delta sample filled with Perimag. The
system matrix was retrospectively undersampled using a
Poisson disk pattern with undersampling factors ranging
from two to five. Fully sampled system matrices were re-
constructed using problem (2). For comparison, we com-
puted solutions for the l2,1- regularized case (λl r = 0) and

Figure 2: Recovered patterns of patch 40 for three representa-
tive frequency components (top). The superimposed numbers
denote the NRMSD of the recovered pattern with respect to the
fully sampled reference (in %). The bottom shows the images
reconstructed with the corresponding system matrix.

Figure 3: NRMSD of recovered system matrices in dependence
of the undersampling factor. The NRMSD was calculated with
respect to the fully sampled system matrix.

for the case that both regularization parameters are non-
zero. As a reference, we also performed a standard CS
recovery with an l1-penalty of the DCT coefficients. For a
quantitative comparison of the results, we calculated the
normalized root mean squared deviation (NRMSD) of
each recovered pattern with respect to the fully sampled
reference. In each case, the regularization parameters
we chosen manually, such that the mean NRMSD of the
recovered frequency components was minimized.

As a further test, the recovered system matrices were
used to reconstruct images from a measurement of a P-
shaped phantom filled with Perimag. Reconstruction
was performed using the l2-regularized Kaczmarz algo-
rithm with 200 iterations and a relative regularization
parameter of 0.5.
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III Results and discussion
Recovered patterns for some representative frequency
components, and an undersampling factor of five, are
shown in Fig. 2. As can be seen, the l1-based CS method
is able to recover the 4t h frequency component, albeit
with some residual noise. The other frequency compo-
nents are severely corrupted by artifacts. In contrast,
the proposed methods successfully recover all frequency
components. While the reconstruction using only the
l2,1-term displays some residual noise for the 16t h fre-
quency component, even this noise is removed when
using the additional higher order low rank regularization.
Those observations are also reflected in the values for
the NRMSD, which are overlayed in Fig 2.

Additionally, Fig. 3 shows the NRMSD of the recov-
ered system matrices in dependence of the undersam-
pling factor. As can be seen, the error rapidly increases
for the l1-based method, while the other methods exhibit
a much slower increase. Hence, one can conclude that
the use of inter-patch correlations allows for a success-
ful recovery of system matrices at higher undersampling
factors.

For the image reconstruction experiment, we ob-
tained a very noisy image when using the system matrix
recovered with the l1-based CS method. In contrast, both
proposed methods yield high quality reconstructions.

Finally, it should be noted that inter-patch correla-
tions could also be exploited in different ways. One ex-
ample is the design of a suitable (d + 1)-dimensional
sparsifying transform. However, such a transformation
requires further information on the acquisition scheme.
Hence, such an approach would probably be less generic
than the proposed method.

IV Conclusions

We developed a method for the joint recovery of multi-
patch system matrices from severely undersampled mea-
surement. The proposed method exploits additional cor-
relations in a multi-patch system matrix and allows for
successful recovery at larger undersampling factors.
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