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Abstract
To simulate the behavior of realistic magnetic particles in magnetic particle imaging it is not enough to perform
simulations assuming only a uniaxial magnetic anisotropy energy due to the complex coupling between the magnetic
and the mechanic degrees of freedom of the particle in multidimensional excitation fields. Most particles can only
be approximated of having uniaxial magnetic anisotropy energy. As such, this work will discuss the shortcoming of
currently used models focusing on only uniaxial anisotropy and show how a theoretical model must be defined to
allow for arbitrary anisotropy energies. First simulation results showing the differences between different anisotropy
energies will be presented at the workshop.

I Introduction
Magnetic particle imaging leverages the nonlinear mag-
netic response of magnetic materials in an external mag-
netic field [1]. As such, magnetic nanoparticles are used
as tracer material in a spatially encoded external mag-
netic field which yields a spatially encoded magnetic
response from the particles. Due to this encoding MPI
can reconstruct the concentration distribution of the
particles within the encoding area (field of view) and has
shown great potential for different applications such as
vascular imaging or cell tracking.

Since the quality of reconstructions highly depends
on the differentiability of the particle’s response in two ad-
jacent points in space and this response is dependent on
the physical properties of the particle and the encoding
field sequence, having a simulation to correctly model
and predict the response of the particles is desirable to
eliminate experimental uncertainty. Furthermore, simu-
lations give full access to modify and change all physical
parameters which might not yet be accessible in an ex-
perimental context.

One of the parameters which strongly influences

the particle response is the magnetic anisotropy en-
ergy (MAE) of the particle. The magnetic anisotropy en-
ergy can be modeled in different ways and one of the
most common used anisotropy models is that of uniaxial
anisotropy which only depends on the angle between
the particles magnetization and one energetically pre-
ferred body fixed axis also called easy axis. The model of
uniaxial anisotropy is the simplest and allows modeling
real particles to a certain degree if the particles exhibit
a strong uniaxial behavior [2]. Unfortunately, this only
covers a small amount of particle classes since particles
exhibit different effects on the nanoscale (e.g. different
surface anisotropies due to geometry) which makes the
total magnetic anisotropy energy a sum of different mag-
netic anisotropy energies. Experimental measurements
of single particles also reveal more complex magnetic
anisotropy energies [3] such as biaxial anisotropy.

To remove the limitation of a uniaxial magnetic
anisotropy energy a theoretical model must be used
which allows the usage of arbitrary magnetic anisotropy
energies within the corresponding Langevin equations
of coupled particle rotation and magnetization dynam-
ics. Simulation models previously published [4-6], which
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solely rely on modeling the particles orientation using
the body fixed easy axis, are not suited for arbitrary
anisotropy energies. Thus, this work will discuss and
show, how such a simulation model with arbitrary MAE
must be set up.

II Theoretical model
The model used to describe the particle rotation and the
magnetization dynamics are all based on the Yolk-Egg
model [7, 8] and consists of coupled Langevin equations
for the magnetization movement (a modified Landau-
Lifschitz-Gilbert equation) and the mechanical rotation
(a modified Euler equation) of the particle. The corre-
sponding angular velocities for the mechanical rotation
~ωn (ignoring the inertia of the particle and any vortic-

ity of the surrounding medium) and the rotation of the
magnetization vector ~ωm are given as [9]:

~ωn =
1

6ηVH
(MS VM ~m × ~Be f f + ~τe f f ) and

~ωm =−
γ

1+α2
~Be f f +

|γ|α
(1+α2)

( ~m × ~Be f f )+

1

6ηVH
(MS VM ( ~m × ~Be f f ) + ~τe f f )

η is the viscosity of the surrounding medium, VH (VM ) is
the hydrodynamic (magnetic) volume, ~m is the unit mag-
netisation vector, MS is the saturation magnetization, γ
is the (electron) gyromagnetic ratio, α is the damping
constant, ~Be f f is the effective magnetic field given as
~Be f f =

1
MS VM

∂U
∂ ~m + ~Bno i s e and ~τe f f is the effective torque

given as ~τe f f =−δU
δφ +~τno i s e . Bno i s e and ~τno i s e are Gaus-

sian white noise terms describing the thermal influence
on the motion. U is the total energy/potential of the
particle consisting of the Zeeman energy MS VM ~m · ~Be x t

and the MAE, e.g. for uniaxial anisotropy it is given as
Ku VM ( ~m · ~n3)2 where Ku is the anisotropy constant and
~n3 is the energetically preferred body axis (which is most
commonly the z-axis). δφ is the infinitesimal rotation
operator as derived in [10].

With the angular velocities the coupled Langevin
equations describing the motion are derived. Depending
on how the state of the particles is represented different
equations are obtained. The most common one found in
literature is using Cartesian coordinates and the vectors
~m and ~n3 [4-6]which yields the equations:

∂ ~n3

∂ t
= ~ωn × ~n3 and

∂ ~m

∂ t
= ~ωm × ~m

with the implicit condition of | ~m |= 1 and | ~n3|= 1. These
equations can only be used, if the potential shows axial
symmetry since the rotation of the particle is not fully de-
scribed. Thus, this is only fullfilled for the case of uniaxial
anisotropy (which allows the reduction of the rotational

gradient of the potential to δU /δφ = ~n3 × ∂U /∂ ~n3. A
second drawback of the method is that it requires an extra
normalization step in any explicit step-wise solver since
the system is overdetermined (6 equations but only 4
free variables) making the numerical method non-linear
and mathematical questionable [11, 12]. This drawback
could be solved by using implicit solvers, like the implicit
midpoint method [12], which has yet to be done in an
MPI related context.

The best way to describe the state of the particle is to
use Euler angles ~Φn = (ϕn ,θn ,ψn ) and spherical coordi-
nates ~Φm = (θm ,ϕm ) representing the orientation of the
particle and the magnetization direction, respectively.
This yields the coupled Langevin equations:

∂ ~Φn

∂ t
= E313(~Φn ) ~ωn and

∂ ~Φm

∂ t
= ESp he r e (~Φm ) ~ωm

with E313 and ESp he r e being projection matrices to map
the angular velocities onto the change of state [13]. The
general rotational gradient of the potential is then given
by

∂U /∂ φ = ~n3× ∂U /∂ ~n3+ ( ~θn cotθn + ~n3)
∂U

∂ ϕn

= ~ϕn
∂U

∂ θn
−

1

sinθn

~θn
∂U

∂ ψn
+ ( ~θn cotθn + ~n3)

∂U

∂ ϕn

with

~ϕn =(cosψn , sinψn , 0) ,
~θn =(sinψn cosθn , cosψn cosθn ,−sinθn ) and

~n3 =(sinψn sinθn ,−cosψn sinθn , cosθn ) .

The additional term in the rotational gradient in com-
parison to the uniaxial case is creating a torque which
creates a spinning motion around the axis ~n3.

Since common particles have an ellipsoidal shape
and a cubic crystalline structure, they exhibit uniaxial
anisotropy due shape and cubic anisotropy due to their
crystalline structure. The total anisotropy can be written
as a sum of both. Cubic anisotropy, only considering first
order terms, is defined as:

Ec u b i c = Kc ,1VM (α
2
1α

2
2+α

2
1α

2
3+α

2
2α

2
3)

with αi = (R0 ~ni (ϕn ,θn ,ψn )) · ~m . R0 is a constant rotation
matrix which describes the fact that the anisotropy axes
do not need to be aligned with the body fixed coordinate
system.

Another more phenomologic approach to describe
the anisotropy energy is used in [14]where an anisotropy
tensor K is introduced. The introduced additional energy
term reads:

Et e n s o r = ~m
T R−1

313(ϕn ,θn ,ψn )K ~m

with the inverse of the rotation matrix R−1
313 = RT

313. In
our case it is defined as the following clockwise rotations:
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around z-axis by φn , around new x-axis by θn and last
around new z-axis by ϕn . The rotation matrix is neces-
sary since the anisotropy tensor is only well defined (con-
stant) in the body fixed coordinate system of the particle
and thus must be transformed back to the space fixed co-
ordinate system. It should be noted that the anisotropy
tensor already includes the uniaxial case and as such it is
enough to write the total anisotropy as a sum of Ec u b i c

and Et e n s o r .

III Conclusions
This work introduces a theoretical model to describe the
coupled magnetic and mechanical motion of magnetic
particles. It is discussed that the common approach of
using Cartesian coordinates with only ~n3 and ~m can-
not fully describe the motion of the particle and is not
suited for arbitrary anisotropy energies. Thus, a theo-
retical model is introduced representing the magnetic
(mechanical) state of the particle in spherical coordi-
nates (Euler angles). With this representation, coupled
Langevin equations are derived which can accommo-
date arbitrary anisotropy energies. At the workshop, first
results comparing the different anisotropies will be pre-
sented and discussed.
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