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Abstract
In this paper, we study the compression of the magnetic particle imaging system matrix for imaging setups in which
a field free point is moved along a Lissajous trajectory. We show that a large number of zeros in the simulated
transformed system matrix is obtained when orthogonal transforms applied to the spatial domain have only sym-
metric and antisymmetric basis functions. For measured system matrices, this property only holds approximately,
because of noise induced by the scanner hardware. The required symmetry properties are naturally fulfilled by
some standard orthogonal transforms such as the type-two discrete cosine transform and the discrete Chebychev
transform. However, these transforms are not yet optimal for compressing system matrices, and we propose a new
method to obtain better transforms that retain the required symmetry properties.

I. Introduction

The tracer-based imaging method magnetic particle
imaging (MPI) allows one to measure the spatial distri-
bution of super-paramagnetic iron oxid nanoparticles
(SPIONs) [1]. A common approach to image the SPIONs’
distribution in a two- or three-dimensional field of view
(FOV) is the field free point (FFP) method [1]. The FFP is
generated by the selection field and is the area where the
SPIONs contribute most to the measured voltage signal.
The dynamic drive field moves the FFP along a trajectory.
A widely used trajectory is the Lissajous trajectory. In this
paper we focus on the FFP method with two dimensional
Lissajous trajectories. For the calculation of the spatial
particle concentration from the voltage signal, a system
matrix based reconstruction is widely used [2]. Since sys-

tem matrices can be very large in size and thus consume
a huge amount of memory in workspace, and because
the image reconstruction can be significantly speeded up
for sparse system matrices, it is of interest to compress
them [3]. The idea is to compact the information on the
system matrix into a few nonzero coefficients by using
orthogonal transforms. The work in [3] considered the
discrete Chebychev transform (DTT) and the discrete co-
sine transform of type-two (DCT-II) for this purpose and
showed that a significant compression can be achieved
for system matrices in MPI with a FFP that moves along a
Lissajous trajectory. In this paper, we study the relation-
ship between the symmetries of the applied transform
and the compressibility of the system matrices. Based
on the results, we introduce an effective compression
method for system matrices.
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II. Material and Methods

II.I. MPI system function

In MPI, the relationship between the measured voltage
signal u`(t ) of the `-th receive channel and the particle
concentration c (r) is usually described by the Fourier
series expansion of u`(t )with Fourier coefficients

û`,k =

∫

Ω

ŝ`,k (r)c (r)dr, (1)

where ŝ`,k (r) denotes the k -th system function compo-
nent of receive channel `, and Ω describes the FOV. The
system function components are defined by

ŝ`,k (r) =−â`,k
µ0

T

∫ T

0

∂

∂ t
m(r, t ) ·p`(r)e

−2πi k t
T dt , (2)

where â`,k describes the transfer function of the receive
chain, m(r, t ) is the mean magnetic moment, p`(r) de-
notes the coil sensitivity, and T is the period. Under the
assumption of isotropic SPIONs with instantaneous re-
laxation the mean magnetic moment is described by [4]

m(r, t ) =m (‖H(r, t )‖)
H(r, t )
‖H(r, t )|

. (3)

Here, H(r, t ) denotes the applied magnetic field and is
given by H(r, t ) =HS (r)+HD (t ), the superposition of the
drive field HD (t ) and the selection field HS (r), and m (z )
denotes the magnitude of the mean magnetic moment
[2]. If we further assume that all coils are aligned orthog-
onal to each other and that the sensitivity profiles of the
coils are uniform, then the system Eq. (2) can be reduced
to

ŝ`,k (r) =−â`,k
µ0

T

∫ T

0

∂

∂ t
m `(r, t )e −2πi k t

T dt . (4)

Here, we assume that `= 0 and `= 1 correspond to the
y - and x -directions, respectively. The two-dimensional
drive field for the Lissajous trajectory is defined by

HD (t ) =

�

H D
x (t )

H D
y (t )

�

=

�

Ax sin(2π fx t )
A y sin(2π fy t )

�

. (5)

To obtain a periodic drive field, the frequency ratio
fx / fy = K y /Kx has to be rational with Kx , K y ∈ N. The
basis frequency is defined by fB := fx Kx = fy K y and
the period reads T = lcm(Kx , K y )/ fB , where lcm is the
least common multiple of the frequency-ratio parame-
ters. The spatial encoding is realized by the selection
field

HS (r) =Gr with G =

�

Gx 0
0 Gy

�

. (6)

II.II. Symmetries in the system function

In [4] it was shown that the following symmetries for an
ideal two-dimensional drive field HD (t ) with even Kx ,
odd K y , and period T hold for all τ ∈R:

�

H D
x (τ)

H D
y (τ)

�

=

�

H D
x

�

T
2 −τ

�

−H D
y

�

T
2 −τ

�

�

=

�

−H D
x

�

T
2 +τ

�

H D
y

�

T
2 +τ

�

�

=

�

−H D
x (T −τ)

−H D
y (T −τ)

�

.

(7)

With the assumption of an ideal drive field, the following
theorem has been proven in [4].

Theorem 1 For an ideal coil configuration, iso-
tropic SPIONs with instantaneous relaxation behavior,
even Kx and odd K y , the following symmetries hold for
all components of two-dimensional signal functions

m̃`,k (−rx , ry ) = (−1)k+` m̃`,k (rx , ry ), k ∈N0,

m̃`,k (rx ,−ry ) = (−1)k+`
�

m̃`,k (rx , ry )
�∗

, k ∈N0,
(8)

where ∗ describes the complex conjugation and
m̃`,k (r) = ŝ`,k (r)/âl ,k is the signal function independent
of the transfer function âl ,k .

In real-world applications, the Fourier coefficients
û`,k of the sampled periodic signal u`(tn ) will be calcu-
lated using the discrete Fourier transform with the sam-
pled time points

tn =
nT

Nt
(9)

with n ∈ [0, 1, . . . , Nt −1] in one period T and Nt ∈N.
The spatial discretization will keep the symmetries in

Eq. (8) if the grid points (r u
x , r v

y ) are located at

r u
x =−

Ax

Gx
+2

Nx −0.5−u

Nx

Ax

Gx
and

r v
y =−

A y

Gy
+2

Ny −0.5− v

Ny

A y

Gy

(10)

with u ∈ {0,1, . . . , Nx − 1} and v ∈ {0,1, . . . , Ny − 1}. We
denote the discrete version m̃`,k (r u

x , r v
y ) as m̃`,k (u , v ) for

short. This brings us to the discrete form of Theorem 1:

Theorem 2 For an ideal coil configuration, iso-
tropic SPIONs with instantaneous relaxation behavior,
even Kx , odd K y , an equidistant time sampling by Eq. (9),
and a spatial sampling by Eq. (10), the following symme-
tries hold for all components of two-dimensional signal
functions

m̃`,k (Nx −1−u , v ) = (−1)k+` m̃`,k (u , v ), k ∈N0,

m̃`,k (u , Ny −1− v ) = (−1)k+`
�

m̃`,k (u , v )
�∗

, k ∈N0.
(11)
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II.III. Transformation with symmetric
and antisymmetric basis vectors

We consider the compression of the system matrix Ŝ
by applying a real-valued separable spatial transform
T = Bx ⊗By , where ⊗ denotes the Kronecker product.
We now prove that the transformed matrix ŜT = ŜT sys-
tematically contains zeros when the transforms Bx and
By applied in x - and y -direction contain only symmet-
ric and antisymmetric basis vectors. In the proof, the
transform is separately performed on each system func-
tion component ŝ`,k (u , v ) = â`,k m̃`,k (u , v ). We express
the signal function component m̃`,k (u , v ) as

M`,k =





m̃`,k (0, 0) · · · m̃`,k (Nx −1, 0)
...

...
...

m̃`,k (0, Ny −1) · · · m̃`,k (Nx −1, Ny −1)



 .

(12)
We say that the symmetry holds for a basis vector
b= (b0, b1, . . . , bL−1)T with L ∈ N when the coefficients
satisfy

bn = (−1)α bL−1−n . (13)

For α= 0, b is symmetric, for α= 1, it is antisymmetric.

For convenience, we use the notations m̃`,k (·, v ) and
m̃`,k (u , ·) to express vectors with fixed v and u , respec-
tively. Using Eq. (11) and Eq. (13), the scalar product
between m̃`,k (·, v ) and b with L = Nx for an even Nx is
written as




b, m̃`,k (·, v )
�

=
Nx−1
∑

u=0

bu m̃`,k (u , v )

=

Nx
2 −1
∑

u=0

bu m̃`,k (u , v )+
Nx−1
∑

u= Nx
2

bu m̃`,k (u , v )

=

Nx
2 −1
∑

u=0

bu m̃`,k (u , v )+

Nx
2 −1
∑

u=0

bNx−1−u m̃`,k (Nx −1−u , v )

=

Nx
2 −1
∑

u=0

bu m̃`,k (u , v )+ (−1)k+`
Nx

2 −1
∑

u=0

bNx−1−u m̃`,k (u , v )

=

Nx
2 −1
∑

u=0

�

bu + (−1)k+` bNx−1−u

�

m̃`,k (u , v )

=

Nx
2 −1
∑

u=0

�

1+ (−1)k+`+α
�

bu m̃`,k (u , v ) .

(14)

Then, two different cases follow (eight, if we distin-
guish between k , α and `):

�

�




b, m̃`,k (·, v )
��

�≥ 0 , if k +α+ ` is even,
�

�




b, m̃`,k (·, v )
��

�= 0 , if k +α+ ` is odd.
(15)

Similarly, the scalar product in v -direction between b
and m̃`,k (u , ·)with L =Ny and an even Ny can be written
as




b, m̃`,k (u , ·)
�

=
Ny−1
∑

v=0

bv m̃`,k (u , v )

=

Ny
2 −1
∑

v=0

bv m̃`,k (u , v )+
Ny−1
∑

v=
Ny

2

bv m̃`,k (u , v )

=

Ny
2 −1
∑

v=0

bv m̃`,k (u , v )+

Ny
2 −1
∑

v=0

bNy−1−v m̃`,k

�

u , Ny −1− v
�

=

Ny
2 −1
∑

v=0

bv

�

m̃`,k (u , v ) + (−1)αm̃`,k

�

u , Ny −1− v
��

=

Ny
2 −1
∑

v=0

bv

�

m̃`,k (u , v ) + (−1)k+`+α
�

m̃`,k (u , v )
�∗�

.

(16)
Again, two different cases follow:

ℑ
�


b, m̃`,k (u , ·)
�	

= 0 , if k +α+ ` is even,

ℜ
�


b, m̃`,k (u , ·)
�	

= 0 , if k +α+ ` is odd.
(17)

For Nx or Ny being odd, the proofs are derived similarly.
Now we have all necessary properties and can de-

termine what will occur under the transform bT
y M`,k bx .

Since the spatial transforms are separable, the symme-
tries in x - and y -direction do not influence one another.
Next, we formulate our results in a lemma.

Lemma If Theorem 2 is fulfilled and bx ∈RNx and
by ∈RNy both have symmetries defined byαx ,αy ∈ {0, 1}
and Eq. (13), then one of the following three different
cases will occur:

bT
y M`,k bx = 0 if k +αx + ` odd ,

ℜ
�

bT
y M`,k bx

�

= 0 if k +αx + ` even∧k +αy + ` odd,

ℑ
�

bT
y M`,k bx

�

= 0 if k +αx + `∧k +αy + ` both even.
(18)

If By ∈ RNy×Ny and Bx ∈ RNx×Nx have only symmetric
and antisymmetric basis vectors and we apply the trans-
fer function â`,k and vectorize â`,k BT

y M`,k Bx for each k ,
at least half of the coefficients in the transformed sys-
tem matrix ŜT ∈CNt ×Ny ·Nx are zeros. The purely real and
imaginary parts turn into complex ones, because the
transfer function â`,k = |â`,k |e iφ`,k is complex valued. In
measured system matrices, the phases φ`,k can be ap-
proximately estimated under the assumption that the
symmetry rules in Theorem 2 are valid for the signal
function component (see also [4]). For measured sys-
tem matrices we cannot expect perfect symmetries and
exactly zero values after the transform, because of noise
in the measured system matrix.
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II.IV. Optimized orthogonal transform
For the compression scheme proposed in this work,
the frequency ratio is chosen to be rational with
fx / fy = K y /Kx = K y /(K y −1), where K y ∈N is odd in or-
der to fulfill Theorem 2. While the DCT-II and the DTT
automatically satisfy the symmetry requirements, they
are not yet optimal for compression purposes. We show
that better compression can be achieved by applying a
secondary orthogonal transform to the matrix ŜT = ŜT .
This transform must be chosen in such a way that it pre-
serves the symmetries of the basis vectors in Bx and
By . Let B be a placeholder for Bx and By . We arrange
B as B = [bs

0, bs
1, . . . , bs

J , ba
J+1, . . . , ba

N−2, ba
N−1], where bs

l is
symmetric and ba

l is antisymmetric. Let BRq(αq) with
q = (i , j ) denote a rotation between the i -th and j -th
columns of B by an angle αq. We choose i and j in
such a way that the corresponding columns are either
both symmetric (i , j ∈ S = {0, . . . , J }) or antisymmetric
(i , j ∈A= {J +1, . . . , N −1}). These rotations will finally
preserve the symmetries. Now let qx

l ∈A×A denote the
coordinates for the l -th rotation of antisymmetric ba-
sis vectors and px

i ∈ S× S the coordinates for the i -th
rotation of symmetric basis vectors, then, for all k , the
transform in the x -direction is described by

T x =Bx

L x
a

∏

l=1

Rqx
l
(αqx

l
)

L x
s

∏

i=1

Rpx
i
(αpx

i
) with L x

a , L x
s ∈N, (19)

where L x
a and L x

s denote the number of rotations be-
tween two antisymmetric and symmetric basis vectors in
Bx , respectively. To optimize the compression properties,
the coordinates qx

l and px
i and the corresponding angles

αqx
l

and αpx
i

, respectively, are used as free parameters
within an optimization framework. The transform T y in
y -direction can be found in a similar fashion. The final
transform then reads T = T x ⊗T y . If the first transforms
Bx and By are orthogonal, then the final transform T
will be orthogonal, because a rotation is an orthogonal
transform. In order to promote sparsity, the objective
function to be minimized is chosen as Q =





vec
�

ŜT

�





1
,

where the operator vec[·] vectorizes a matrix. The
matrix T is parameterized by a set of rotation angles
�

αqx
1

, . . . ,αqx
L x

a
,αpx

1
, . . . ,αpx

L x
s

,αqy
1

, . . . ,αqy

L
y
a

,αpy
1

, . . . ,αpy

L
y
s

�

.

However, since optimizing all angles jointly is a highly
nonlinear and computationally demanding problem, we
consider an alternative approach in which we recursively
build up T as

T i+1 = T i ·
�

Rqx
i
(αqx

i
)Rpx

i
(αpx

i
)⊗Rqy

i
(αqy

i
)Rpy

i
(αpy

i
)
�

, (20)

with T 0 =Bx ⊗By . In each step i , the angles for randomly
chosen index pairs qx

i , px
i , qy

i , py
i within their sets A and

S are optimized with a quasi-Newton method to maxi-
mally decrease the objective function Q defined above.
Finally, it should be mentioned that all rotations can be
performed by a full matrix multiplication with the final T .

III. Results
For testing, we used a dataset from the Philips MPI mice
scanner [5]. This dataset was also used in several re-
lated publications [4, 6–8]. In this dataset, the frequen-
cies fx and fy were chosen as fx = (2.5/96)MHz and
fy = (2.5/99)MHz, respectively, resulting in a frequency
ratio for the Lissajous trajectory of fx / fy = 33/32. The
sampling rate fs was 20 MHz. Several frequencies were
deleted and only the first 1268 frequency components
were available, because it was considered that frequency
components higher than 1 MHz only contain noise. The
FOV size is 20.4 mm×12.0 mm and has a 68×40 grid.
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optimized transform
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Figure 1: NSE as a function of the percentage of remaining
coefficients after global hard-thresholding in the range of 0%
to 15%.

For this dataset, we optimized the secondary trans-
form matrices as described above. The first transform
matrices Bx and By were chosen as DCT-II matrices. As
can be seen in Fig. 1, our method obtains better compres-
sion ratios in terms of normalized squared error (NSE)
than the standard approaches from [3], where the nor-
malized squared error is defined by

ε(x, xc ) =
‖xc −x‖2

2

‖x‖2
2

,

where x is the original signal and xc is the reconstructed
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5% 0.2%

globally
thresholded
DCT

globally
thresholded
opt.
transform

locally
thresholded
DCT

locally
thresholded
opt.
transform

Figure 2: Reconstruction results for global and local thresh-
olds with 0.2% and 5% remaining coefficients and different
transforms.

version after lossy compression. One can see that gains
of up to 2 dB can be achieved.

In a second experiment we tested the image recon-
struction with the compressed system matrix with global
[3] and local thresholding [7] strategies. To be compara-
ble to the results in [7] we selected in total 1400 matrix
rows from the system matrices related to both receive
channels with the best signal-to-noise ratios and concate-
nated them to one system matrix. Then we thresholded
the remaining compressed system matrix so that either
0.2% or 5% of the entries were unequal zero. In Fig. 2 we
reconstruct the particle distribution for one frame. As
baselines we show also the results for the globally and
locally thresholded system matrix compressed by the
DCT-II. For our optimized orthogonal transform, we per-
form global and local thresholding. Like in [7] for 5%
remaining coefficients the reconstructed images have
similar visual quality. For strong compression with only
0.2% of the original coefficients remaining, the locally
thresholded DCT-II results in a heavily blurred version
of the P, whereas our optimized transform is still able to
reconstruct the particle distribution with just little blur.
For the local thresholding with the DCT-II as transform,
the reconstruction of the particle distribution results in
a smaller blurred version than the global thresholded
version of our optimized transform, but with some new
artifacts close to the particles. The local threshold recon-
struction with our optimized transform is still compa-
rable to the one with 5%, with some additional artifacts
close to the particles.

IV. Discussion
We have shown that the applied spatial transforms
should obey certain symmetries to ensure sparsity for
the transformed system matrix. Experimentally it was
verified that these symmetries can be used to compress
measured datasets. We show how better compression
results for system matrices could be achieved by using
an optimized secondary transform that keeps the sym-
metries of the DCT-II. In a second experiment, we were
able to demonstrate that the proposed system matrix
compression leads to better reconstruction result than
the DCT-II. The reason is that the optimized transform
retains more important information on the system ma-
trix than standard transforms. Interestingly, the method
cannot be directly transferred to three-dimensional MPI,
because no symmetries in all excitation directions can
be found (cf. Discussion in [4]), but it is still possible to
optimize the transform with help of rotation matrices.
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