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Abstract
In Magnetic Particle Imaging, the behavior of the system matrix energy in dependence of the frequency components
has been investigated and relations have been observed. Due to the lack of a closed-form expression for the 2- or
3-dimensional system function, no expression for the energy has been obtained thus far. In this work, we use the
recently found expression for the 2-dimensional system function to derive an upper bound for the energy of the
2-dimensional system function as a function of the frequency components. The comparison of the upper bound
with the energy of a simulated system matrix confirms the results.

I Introduction
One common approach for reconstruction algorithms
for Magnetic Particle Imaging (MPI) is the reconstruc-
tion using a system matrix in the temporal Fourier do-
main [1]. It has been observed that the energy of the
system matrix varies in dependence of the frequency
components in wave-like patterns [2]. With an expres-
sion of the 2-dimensional system function according to
the Langevin model, we can obtain an upper bound for
the system function energy. This might allow for more ac-
curate signal-to-noise ratio (SNR) estimations and, thus,
may result in better reconstruction quality.

I.I Expression for the 2D system
function

The standard system matrix approach for reconstruction
is to minimize

||S c −u ||22+λR (c ) (1)

with respect to c , where S ∈CN×M is the system matrix
in frequency space, u ∈CM contains the Fourier coeffi-

cients of the voltage measurement, and c ∈RN
+ is the su-

perparamagnetic iron oxide nanoparticle (SPIO) distribu-
tion. In [3] it has been shown that for the 2-dimensional
case the spatio-temporal Fourier transform of the sys-
tem function according to the Langevin model can be
expressed as
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The variables areωk = 2πk/TD with TD the period length
of the Lissajous trajectory, β = µ0m

kB T with the vacuum per-
meability µ0, the Boltzmann constant kB , the tempera-
ture of the SPIOs T , the magnetic moment m , and L
the Fourier transform of the 2D Langevin function. Fur-
thermore, G = diag(Gx ,Gy ) and Ax , A y are the applied
gradients of the selection field and the amplitudes of the
drive field, respectively, Jn is the Bessel function of first
kind and n-th order, and NB is a frequency divider for
the 2D Lissajous trajectory, e.g. TD =

NB (NB−1)
fB

with fB the
basis frequency of the MPI scanner.

With a similar approach as in [4], it can be shown that
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Table 1: Parameters for the system matrix simulation.

Parameter Value
Particle core diameter 30 nm
Temperature 293 K
Gradient strength Gx =Gy 1 T/m/µ0

Excitation amplitudes Ax = A y 0.0125 T/µ0

Excitation frequencies fx , fy [2.5/96, 2.5/93] ·106 Hz

||Jn (x )x
α||L∞ ≤C nα−1/3 (3)

with α ≤ −n , n ∈ N and a constant C ∈ R+. Using this
formula, we derive an upper bound for the energy of
the system function depending on the frequency com-
ponents.

II Derivation

Let A(ω) denote the prefactor of the sum in Eq. (2), i.e.,

A(ω) = −iωk
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�

. With the triangle inequality

and Hölder’s theorem, we get for the energy of the system
function
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With the help of eq. (3) we can show that
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holds. Note that the absolute orders of the Bessel func-
tions must exceed 1, which means that the terms have
no singularities. For the remaining norm in eq. (4) we
get the result

||A(ω)ω2
xω

2
y ||L 2 ≤C2k ||e −|α1ωx |−|α2ωy |ω2

xω
2
y ||L 2 <∞ . (6)

By inserting (5) and (6) into (4), we get

||ŝk (ω)||2L 2 ≤
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for a C3 ∈ R. In fact, only one or two summands con-
tribute significantly to the infinite sum. It can be shown
that the indices of these summands are located inside
the interval b k

NB
c ≤λ≤ b k

NB−1 c.

Figure 1: Comparison of derived upper bound for the energy
of the system function and the energy of a simulated system
matrix.

Figure 2: Detail look at the energy bound and the energy of
the simulated system matrix.

III Numerical results

In this section we compare the derived upper bound
with the energy of a simulated system matrix without
any noise. The simulation was performed with the pa-
rameters given in Table 1. The energy with respect to the
frequency components was computed and compared.
The results are shown in Figs. 1 and 2. Since the con-
stant C3 in Eq. (7) is not known, the correct scaling of
the upper bound cannot be derived accurately and is
fitted manually. It can be seen that the energy bound
has a similar decay for large frequency components k .
Besides, the position of the local minima and maxima
of the system matrix energy can be determined on the
basis of the energy bound. With a proper scaling, the
energy at the local minima is very close to the bound for
frequency components up to about k = 500. This does
not hold for larger k , but in this case the values at the
local maxima are very close to the simulated results and
decay in a similar manner.
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IV Discussion
The results show that the derived bound has similar prop-
erties as the simulation and allows one to determine the
frequency components with locally minimum and maxi-
mum energy. In spite of that, for k > 700 the bound has
minima at the positions of the maxima and vice versa.
This could be due to the use of Hölder’s theorem in eq.
(4). A direct estimation of the L2-norm of the product
of the Bessel functions with the term A(ω)might better
reflect the behavior of the simulation. It should also be
noted that the estimation of the energy is identical for
ωx andωy . This means that the estimation is a bound
for the energy of both receive coils.

V Conclusions
The behavior of the upper bound and the simulated en-
ergy show similar properties. Since it is quite exact for
the low energy for components that are not too large,
this information can be used for the estimation of the
SNR and for the detection of frequency components with

significant noise. For large frequency components the es-
timation of the local maxima might be used to determine
a cut-off frequency.
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