
International Journal on Magnetic Particle Imaging
Vol 6, No 2, Suppl 1, Article ID 2009017, 3 Pages

Proceedings Article

MPI reconstruction using Bessel functions
M. Maass1,∗· C. Droigk1· A. Mertins1

1Institute for Signal Processing, Universitiy of Lübeck, Lübeck, Germany
∗Corresponding author, email: marco.maass@uni-luebeck.de

© 2020 Maass et al.; licensee Infinite Science Publishing GmbH

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Abstract
This publication proposes for the first time a direct reconstruction technique based on weighted Bessel functions of
first kind. As basis for the formulation the well-known Chebyshev reconstruction is used. By utilizing the Fourier
transform of Chebyshev polynomials of second kind, which is nothing else than a weighted Bessel function of first
kind, a new formulation which allows for reconstruction of the particle distribution in the Fourier domain is derived.
This method comes with the benefit of allowing for a direct deconvolution in frequency domain. With numerical
simulations we show the equivalence to the Chebyshev reconstruction and demonstrate different strategies to
perform the deconvolution.

I Introduction

In a fairly simplified model, Magnetic Particle Imaging
(MPI) can be described by the Langevin theory of para-
magnetism [1]. Unfortunately, the model neglects re-
laxation effects of the nanoparticles and magnetic field
inhomogeneities of the scanner. This problem results
in a lack of closed-form solutions in MPI, which made
it popular to use system matrix based reconstructions
when higher-dimensional drive field excitation is con-
sidered. However, if only one-dimensional excitation for
the drive field is used, the model is good enough for fast
image reconstruction techniques. Such common tech-
niques are the x-space reconstruction [2] or the Cheby-
shev based reconstruction [3]. It was shown that, from
the mathematical point of view, the Chebyshev and x-
space reconstructions are completely equivalent [4]. Nev-
ertheless, from a practical point of view both methods
have their own pros and cons. A relationship between
MPI and Bessel functions of first kind was uncovered
in [5]. Throughout this publication we will transfer the
Chebyshev based reconstruction into the spatial Fourier
domain, which finally results in a Bessel series based
reconstruction technique for MPI.

II 1D MPI with the Langevin
model

One-dimensional MPI can be described by the model [1]

u (t ) =
d

d t

�∫ ∞

−∞
c (x )M0L

�

βG (xFFP(t )− x )
�

d x

�

(1)

with β = µ0m
kB T and M0 = pµ0, where u (t ) denotes the

voltage signal, c (x ) is the spatial particle distribution, p
denotes the coil sensitivity, µ0 the vacuum permeability,
kB the Boltzmann’s constant, T the temperature of the
particles, and m the magnetic moment of one particle.
The functionL (x ) denotes the Langevin function, which
is used to describe the mean magnetization of the parti-
cle distribution. The position of the field-free point (FFP)
at time point t is given by xFFP(t ) = −G −1H D (t ), where
H D (t ) denotes the drive field and G denotes the applied
gradient strength of the static gradient field. One com-
mon choice for the drive field is H D (t ) =−A cos

�

2π fD t
�

,
which is periodic with TD = 1/ fD and A denotes the drive
field amplitude. Commonly, (1) is also given in terms of

10.18416/ijmpi.2020.2009017 © 2020 Infinite Science Publishing

mailto:marco.maass@uni-luebeck.de
https://dx.doi.org/10.18416/ijmpi.2020.2009017
https://dx.doi.org/10.18416/ijmpi.2020.2009017


International Journal on Magnetic Particle Imaging 2

Fourier series coefficients of u (t ):

uk =
1

TD

∫ TD /2

−TD /2

u (t )e −iωk t d t , (2)

where ωk = 2π fD k . It was shown that the Chebyshev
series expansion [3]

c̃ (x ) =
TD |G |

i M0π|A|

∞
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x

�

�

�

�

≤ 1 (3)

with Uk (x ) being the Chebyshev polynomial of second
kind and order k can be used to reconstruct the “blurred”
particle distribution c̃ (x ) = (c ∗ m̃ )(x ), where ∗ denotes
convolution of the particle distribution c (x )with m̃ (x ) =
mβGL ′(βG x ). If desired, the function c̃ (x ) can be de-
convolved in the spatial Fourier domain with help of the
Fourier transform of m̃ (x ).

III Bessel function based
reconstruction

Let

Vk (x ) =

�

Uk−1(x )
p

1− x 2 if|x | ≤ 1
0 else .

(4)

The Fourier transform of Vk (x )with k ∈N+ reads

V̂k (αω) =F
§

1

α
Vk

� x

α
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ª

=
−kπ

i k+1

Jk (αω)
αω

, (5)

where Jk (ω) denotes the Bessel function of first kind and
order k . The “blurred” concentration c̃ (x ) according to
(3) is now weighted to yield
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By applying the spatial Fourier transform to each term
in (6), one obtains

q̂ (ω) =
TD G

M0A

∞
∑

k=1

k Jk

�

A
G ω

�

i kω
uk . (7)

The final deconvolution problem now reads

q̂ (ω) =
1

2π

|A|
|G |

V̂1

�

A

G
ω

�

∗
�

c̃ (ω) · ˆ̃m (ω)
�

. (8)

Although multiplication and convolution do not exactly
commute, a strategy to obtain the deconvolved particle
distribution from q̂ (ω) could be to multiply (8) with the
reciprocal of ˆ̃m (ω), then perform an inverse fast Fourier
transform (IFFT), and finally weight the result with the in-
verse of V1(x ) to obtain an estimate of c (x ). Alternatively,

it can be observed that the “blurred” particle distribution
has the form

c̃ (x ) =
1

Ç

1−
�

G
A x

�2
q (x ) (9)

and, equivalently, the formula (9) reads in frequency
space

ˆ̃c (ω) =
|A|

2|G |
J0

�

A

G
ω

�

∗ q̂ (ω) . (10)

Eq. (10) allows one to perform a numerical deconvolu-
tion with J0

�

A
G ω

�

. To carry out the deconvolution, an
additional windowing function has to be applied, other-
wise the deconvolution with the Bessel function of first
kind and order zero becomes unstable. Afterward, ˆ̃c (ω)
has to be multiplied with the reciprocal of ˆ̃m (ω) to obtain
the Fourier transformed particle distribution ĉ (ω).

IV Material and methods
Based on the Langevin model of paramagnetism, sim-
ulations of a one dimensional MPI system were carried
out to obtain a voltage signal u (t ). Afterward, the volt-
age signal was corrupted with white Gaussian noise so
that the signal-to-noise ratio was 15 dB. Next, the FFT
was used to compute the frequency components uk .
The particle size was set to 30 nm and human body
temperature was assumed. The applied gradient field
strength was G = 1 T⁄((mµ0)) and the drive field am-
plitude was A = 0.0125 T⁄µ0. This resulted in a field of
view of 23 mm. Moreover, we set fD to 26.04 kHz. The
deconvolution was performed by an pseudoinverse fil-
tering with ˆ̃m−1(ω) and the cutoff frequency ωc when
| ˆ̃m−1(ωc )|= 0.1| ˆ̃m−1(0)|.

V Results and discussion
Fig. 1 shows different reconstruction results for a ground
truth phantom. In the top row, the reconstruction results
were obtained without deconvolution c̃ (x ), whereas at
the bottom, the reconstructions were performed with
deconvolution of c̃ (x ). The plot titles describe the steps
taken to obtain the reconstructions. In the left column,
the baseline Chebyshev reconstruction is shown. The
middle and right columns show the image reconstruc-
tions using the proposed strategies based on Eq. (7). In
the middle, the weighting V1(G /Ax )was removed in the
image domain (ID) (9). The middle plot at the bottom
shows the result for a deconvolution in frequency do-
main (FD) with ˆ̃m−1(ω) (8) followed by removing the
weighting in ID (9). Although this procedure is math-
ematically not entirely correct to yield the true particle
distribution, the reconstruction is quite similar to the
other ones. Only near to the FOV boundaries, some sin-
gularities become visible. Overall, this strategy is the
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Figure 1: Results of different reconstruction methods. Top: Reconstructions of c̃ (x ). Bottom: Reconstructions of c (x ) with
deconvolution of c̃ (x ) (Deconv). The ground truth distribution is indicated by dashes. The titles describe the operations carried
out to obtain the reconstructions. The shorthand FD stand for an operation in frequency domain and ID means an operation
in image domain. FFT and IFFT denote the fast Fourier transform and its inverse, respectively. RMSE denotes the root mean
squared error related ground truth distribution.

most efficient one of the shown methods with deconvo-
lution of c̃ (x ). The right plots show the reconstruction
results after removing the weighting in the FD (10). The
top right plot is equivalent to the result after applying Eq.
(10) followed by an IFFT. At the right bottom, also a de-
convolution with ˆ̃m−1(ω) (8) was performed, and it can
be observed that the reconstruction is nearly identical to
the Chebyshev based reconstruction with deconvolution
shown on the left side.

VI Conclusions
We proposed a direct image reconstruction for one-
dimensional MPI which is fully equivalent to the Cheby-
shev reconstruction. The proposed method allows for re-
construction of the particle distribution in the frequency
domain. Since deconvolution is commonly performed
in the frequency domain, the proposed method is well
suited for such purpose. Interestingly, inserting (7) into
(10) uncovers a convolution structure between different
Bessel functions of first kind, which should be further
investigated.
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