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Abstract
In Magnetic Particle Imaging (MPI), the system matrix plays an important role, as it encodes the relationship
between particle concentration and the measured signal. Its acquisition requires a time-consuming calibration
scan, which can be a limiting factor in practical applications. Calibration time can be reduced using compressed
sensing, which exploits the knowledge that the MPI system matrix has a sparse representation in a suitably chosen
domain. This work seeks to further enhance sparse system matrix recovery by optimizing the sampling points to
the signal class at hand. For this purpose we introduce an experiment design method based on the Bayesian Fisher
information matrix. Our technique uses a previously measured system matrix to tailor the sampling pattern to the
signal class at hand. Our tests show that the optimized sampling patterns lead to a more accurate system matrix
recovery than popular random sampling approaches. Moreover, our tests demonstrate that the optimized sampling
patterns are sufficiently robust to enhance the recovery of system matrices for other types of particles or other
experimental conditions.

I. Introduction
Magnetic Particle Imaging (MPI) is a promising tech-
nique for imaging the distribution of magnetic nanopar-
ticles (SPIOs) in vivo [1, 2]. The method offers both high
spatial and high temporal resolution. Furthermore, MPI
does not require the use of ionizing radiation, which is in
contrast to some popular functional imaging techniques
such as positron emission tomography. One of the main
target applications of MPI is the imaging of the blood
flow for the diagnosis of vascular diseases [3–7]. Others
include the tracking of surgical instruments using special
magnetic markers [8–10] and the mapping of physiologi-
cal parameters such as tissue temperature [11].

For non-Cartesian MPI, the most popular image re-
construction approach uses a system matrix (SM) to
model the MPI signal generation process. With an SM at
hand, an inverse problem can be solved to recover the un-
derlying tracer distribution. To obtain the required SM,
one can resort to physical models or perform a calibra-
tion scan prior to the actual imaging experiment. While
the feasibility of the model-based approach has been
demonstrated using various magnetization models [12–
14], these approaches are not in wide-spread use due to
the numerical effort associated with sufficiently realistic
models of the particle-dynamics [14]. Instead the cali-
bration based approach is more commonly used in MPI.
The latter is very generic since system matrices can be de-
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termined for different kinds of tracers [15, 16] and under
different conditions (e.g. temperature and viscosity) [17,
18]. Moreover, scanner specific system imperfections,
such as field distortions, are intrinsically taken into ac-
count. As a matter of fact, the calibration scan is very
time consuming and becomes prohibitively expensive
for 3d imaging of larger volumes. For instance the 3d sys-
tem matrices used in this work each had a measurement
time of ∼ 30 hours. Such long calibrations times are par-
ticularly problematic for scanners, such as the human-
sized low-field brain imager presented in [19]. For these
kinds of scanners, coil heating is a serious issue, which
effectively prevents continuous measurements over such
long times.

To reduce calibration times, various techniques have
been proposed based on the paradigm of compressed
sensing (CS) [20–25]. These techniques exploit the fact
that the MPI system matrix has a sparse representation
when applying a suitable transformation such as the
discrete cosine transform (DCT), the discrete Fourier
Transform (DFT) or the discrete Chebyshev transform
(DTT). In combination with pseudo-random measure-
ment points it was found that high quality system ma-
trices can be recovered from measurements with more
than 10-fold undersampling [20–22].

A common aspect of past works on CS-based SM re-
covery is the use of pseudo-random sampling schemes,
such as the well-known Poisson disk (PD) pattern. This
choice is popular, because CS theory provides perfor-
mance guarantees for the case of random measure-
ments [26]. While being very generic, such sampling
patterns do not necessarily yield the best recovery re-
sults for a given measurement matrix and a given signal
class to be recovered. For instance, it is well known that,
for magnetic resonance imaging (MRI) measurements,
variable density patterns yield superior results.

In MRI, aforementioned observation has led to the
development of dedicated techniques, which tailor sam-
pling patterns to a given anatomy at hand [27–29]. For
instance, OEDIPUS adapts sampling patterns to the spar-
sity structure of the underlying images [30] by optimizing
the constrained Cramer-Rao bound [31]. Similarly, the
problem of designing efficient sampling schemes has
been addressed for other applications such as network
monitoring [32], localization and tracking [33] and graph
signal processing [34]. This broad range of applications
has also triggered a number of more general works, which
provide general frameworks for optimizing the selection
or placement of sensors [35–37].

The aim of this work is to investigate the use of opti-
mized sampling patterns for the recovery of MPI system
matrices. Our main contribution is the introduction of
a new algorithm to optimize sampling patterns based
on the sparsity patterns of a previously measured sys-
tem matrix. The proposed method can be viewed as a
Bayesian extension of the OEDIPUS framework. This

allows us to incorporate further information about the
structure of the system matrices to be recovered. A pre-
liminary version of our framework was described in [38],
in the context of MRI image reconstruction. We note
however, that this preliminary work does not take into ac-
count the intricacies of the MPI calibration process. Our
results demonstrate that the optimized patterns yield a
more accurate system matrix recovery than the popularly
used pseudo-random sampling patterns. In particular,
the recovery error is reduced for frequency components
with high mixing order, which are often corrupted by a
large amount of measurement noise.

II. MPI Theory
II.I. Mathematical Notation
In this work, we use standard mathematical notation
where small boldface letters denote vectors and capi-
tal boldface letters denote matrices. Moreover, we use
the symbol ∗ to denote complex conjugation of either
a scalar, a vector or a matrix. In the case of a vector or
matrix, complex-conjugation is understood to be per-
formed component-wise. For a matrix A, we use AT to
denote the transposed matrix and AH = (A∗)T to denote
the complex-conjugated and transposed matrix. For a
vector x ∈CN , the transposed vector x T refers to the cor-
responding row vector obtained when interpreting x as
a (N ×1)-matrix.

II.II. Prerequisites
In MPI the distribution of tracer material c (r) is encoded
using a static magnetic gradient field, termed the selec-
tion field, which contains a field-free point (FFP) in the
origin. The FFP is moved around within the field of view
(FOV) by a dynamic, nearly homogeneous field termed
the drive field. The region covered by the FFP is com-
monly refered to as the drive-field FOV (DF-FOV). Note
however, that the actual FOV is usually chosen larger than
the DF-FOV to avoid artifacts due to signals generated
by particles outside the FOV [39].

In order to model the relationship between c (r) and
the measured MPI signal, one typically makes the as-
sumption that particle-particle interactions can be ne-
glected. In this case, the Fourier coefficients of the mea-
sured voltage signal at frequency fk can be expressed
using a linear model

uk =

∫

FOV

sk (r)c (r)d
3r. (1)

Here r denotes the spatial position and sk is the k th fre-
quency component of the MPI system function. If we
discretize space into N voxels with centers {rn}n=1,··· ,N
we can formulate the discrete forward model

u= Sc. (2)
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Here u = (uk )k=1,··· ,K and c = (c (rn ))n=1,··· ,N denote the
measured signal and the particle concentration, re-
spectively. Furthermore, S= (wn ŝk (rn ))k=1,··· ,K ;n=1,··· ,N is
the MPI system matrix and (wn )n=1,··· ,N are quadrature
weights induced by the discretization.

The standard procedure for measuring a system ma-
trix is to place a small sample, filled with tracer, in the
center of each voxel on the imaging grid and to measure
the response of the system. Let c0 denote the tracer con-
centration in the sample and e j ∈RN the j th unit vector.
Then the described measurement yields c0Se j , which cor-
responds exactly to the j th column of the system matrix
scaled by c0. In practice, one typically averages multi-
ple measurements in order to obtain a measurement
with high signal-to-noise ratio (SNR). As outlined be-
fore, this procedure can be quite time-consuming, es-
pecially for large 3-dimensional imaging grids. CS-based
approaches try to alleviate such problems by measur-
ing the system response only for a subset of all voxels
in the imaging grid. The remaining information is then
recovered based on prior knowledge, as discussed in Sec-
tion II.III.

II.III. CS-based System Matrix Recovery

Having performed an undersampled calibration scan, as
outlined in the previous section, sparse system matrix re-
covery aims to recover fully sampled system matrix rows
by exploiting the transform domain sparsity of the fre-
quency components. To formalize the underlying ideas,
let us consider a fixed row k of the system matrix and let
s ∈CN denote the vectorized representation of this row.
Here and in the following, we omit the row index k for the
sake of readability. When extracting the corresponding
row from the calibration measurements, one obtains a
vector y ∈CM , which can be related to the underlying
system matrix row via a linear measurement model

y=HΩs+nΩ. (3)

Here HΩ ∈CM×N denotes the measurement matrix and
nΩ denotes the measurement noise, which we assume
to be Gaussian with a diagonal covariance matrix RΩ =
diag(r1, . . . , rM ).

The measurement matrix can be viewed as a collec-
tion of M individual measurements {hT

j ∈C
1×N } j∈Ω each

of which constitutes one row of HΩ. Here Ω denotes a set
of indices each of which is associated with one measure-
ment performed. For later reference, we also introduce
the set Γ = {1, . . . , N } containing the indices of all possible
measurements. For the MPI system matrix, each indi-
vidual measurement corresponds to the measurement
at one voxel-center in the FOV. Thus, the corresponding
measurements can be written as hT

j = eTj . A special case
is that of full sampling, where Ω= Γ and the correspond-
ing measurement matrix is just the identity matrix.

A further assumption underlying CS is the sparsity
of the signal to be recovered. Here, we assume that the
signal is S-sparse in a suitably chosen transform domain.
To be precise we assume that the signal can be written
as s = Ψ†α with α containing only S < N non-zero co-
efficients. Here Ψ ∈CQ×N is a left-invertible sparsifying
transform with pseudo-inverse Ψ†. For the MPI system
matrix, common sparsifying transforms are the DCT, the
DFT and the DTT.

Following the outlined ideas, CS theory establishes
that an estimator for s can be obtained by solving an
`1-regularized minimization problem of the form

argmin
s
‖Ψs‖1 subj. to

1

2



HΩs−y




2

2
< ε2. (4)

Here the parameter ε determines the trade-off between
the `1-term and data-fidelity.

CS theory provides recovery guarantees for measure-
ment matrices which fulfill a restricted isometry prop-
erty [26]. In particular, this property is fulfilled by random
sampling patterns. For this reason, pseudo-random pat-
terns, such as Poisson disk patterns are most frequently
used. Albeit being very generic, such sampling patterns
often do not yield the best results for a given class of
signals. This motivates us to investigate optimized sam-
pling patterns in the subsequent sections.

In this work, we solve the CS problem (4) using the
Split Bregman method [25, 40]. This method approxi-
mates a solution to the constrained problem (4) by solv-
ing a series of unconstrained problems according to the
iteration

si+1← argmin
s

1

2



HΩs−yi




2

2
+λ‖Ψs‖1

yi+1← yi +y−HΩsi+1.
(5)

Here λ is the regularization parameter for the `1-term
in the unconstrained problems, which determines the
trade-off between data fidelity and sparsity of the solu-
tion. For further details about the method, we refer the
reader to Reference [40].

III. Sampling Pattern
Optimization

In this section, we introduce our method for the opti-
mization of sampling patterns informed by the sparsity
structure of a previously measured system matrix. We
start by reviewing a general framework for experiment
design based on the Fisher information matrix in Sec-
tion III.I. Albeit being very generic, this framework itself
does not take into account the sparsity of the signals to
be recovered. In Section III.II, we outline how the lat-
ter can be incorporated by a suitable extension of the
framework. In the following Sections III.III and III.IV, we
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discuss the solution of the proposed optimization prob-
lem and some aspects of the numerical implementation.
Finally, Section III.V is concerned with the application
of the proposed method to the problem of MPI system
calibration.

III.I. Experiment Design

From a statistical point of view, solving the CS prob-
lem (4) yields an estimator for s given measured data
y. In the following, let this estimator be denoted by
ŝ : CM → CN . The achievable accuracy of such an es-
timator strongly depends on the measurement matrix
HΩ. Experiment design is concerned with the question
how to chose the set of measurements Ω ⊂ Γ such that
the estimation error for the underlying parameter vector
s is minimized. In the literature this is also known as the
sensor selection problem [36, 37].

In order to assess the achievable accuracy for a given
experiment, one can resort to the Cramer-Rao bound
(CRB). The latter gives a lower bound for the covariance
matrix cov(ŝ(y)) of an unbiased estimator for s:

cov(ŝ)� J−1
Ω (ŝ) =

�

HH
ΩR−1
Ω HΩ

�−1
. (6)

The matrix JΩ(ŝ) = HH
ΩR−1

Ω HΩ is also referred to as the
Fisher information matrix (FIM). Moreover, the nota-
tion � refers to the Loewner ordering. Thus, the mean-
ing of (6) is that cov(ŝ(y)) − J−1

Ω (ŝ) is always a positive
semi-definite matrix. Importantly, this implies that
the variance of estimates for a parameter s j can be
lower bounded by the corresponding diagonal element
(J−1
Ω (ŝ)) j j .

Aforementioned relationships makes it attractive to
use J−1

Ω (ŝ) as a criterion to optimize the set of measure-
ments to be performed. This is captured in the optimiza-
tion problem

Ω= argmin
Ω⊂Γ
|Ω|=M

F
�

J−1
Ω (ŝ)

�

. (7)

According to this formulation, one searches for a set
of M measurement vectors, such that the resulting in-
verse FIM is small in some sense, which is determined
by the function F :CN×N →R. There exist many popular
choices for its choice. One is the log-det penalty FD (·) =
log det(·), which leads to the notion of D -optimality [41].
This method has the interpretation that the volume of the
confidence-ellipsoid for the unknown parameters is min-
imized. Another popular choice is the function FA(·) =
tr (·), which leads to the concept of A-optimality [41]. Solv-
ing the corresponding optimization problem leads to a
design with minimum average variance. In the remain-
der of this work, we only consider the average variance
penalty FA .

III.II. Oracle-Based Experiment Design
The concepts introduced in the previous section, provide
us with a framework to evaluate and to optimize sam-
pling schemes under the linear model. However, this
framework does not take into account the transform do-
main sparsity of the parameters to be estimated. The
latter is a key assumption of CS. A second issue is that
the CRB is only valid for unbiased estimators. This is
problematic because CS reconstruction schemes rely on
regularization, which implies that the resulting estima-
tors are usually biased.

To address these issues, we follow the approach used
by OEDIPUS to inform experiment design about the spar-
sity structure of the parameters of interest. The latter
is based on the constrained CRB for sparse parameter
vectors, which was introduced by Ben-Haim and Eldar
in [31]. A key result of this work is that the CRB for an
S-sparse parameter vector is equal to the CRB of an es-
timator bestowed with the oracle knowledge about the
location of the non-zero entries in α. Therefore, let αS

denote the vector containing only the S non-zero coeffi-
cients of α. Moreover, let U ∈RQ×S be the matrix, which
places the coefficients αS at the corresponding locations
in α (i.e. α=UαS ). In this setting, the measured signals
can be written as

y=HΩΨ
†UαS +nΩ, . (8)

The matrix HΩΨ
†U ∈CM×S can thus be viewed as a gen-

eralized measurement, which generates the measured
data y from the significant coefficients of the sparse rep-
resentation of s. Based on this, OEDIPUS optimizes an
oracle based CRB of the form

cov(α̂S )� J−1
Ω (α̂S ) =

�

UH
�

Ψ†
�H

HH
ΩR−1
Ω HΩΨ

†U
�−1

. (9)

Following our previous line of thought, (9) can be viewed
as the CRB for an estimator which only considers the
significant coefficients of α.

In this work, we extend the OEDIPUS approach by
moving to a Bayesian setting similar to that considered
in [37]. Thus, we assume that the parameters αS have a
Gaussian prior distribution, αS ∼N (0,Σα) with covari-
ance matrix Σα. In order to optimize sampling patterns,
we propose to optimize the inverse Bayesian FIM

J̃−1
Ω (α̂S ) =

�

Σ−1
α +UH

�

Ψ†
�H�

HH
ΩR−1
Ω HΩ

�

Ψ†U
�−1

. (10)

This can be viewed as a Bayesian generalization of the
constrained CRB. In fact it can be shown that (10) is the
covariance matrix of the minimum mean squared error
estimator for the oracle based measurement model (8)
and the assumed prior on αS [42]. Assuming a Gaus-
sian prior distribution might seem like a pretty strict as-
sumption. However, we note that this assumption is
commonly made as a first attempt in Bayesian statisti-
cal modeling. For example, the commonly used ridge
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regression model can be obtained by assuming a linear
measurement model with normally distributed measure-
ment noise and a normal prior distribution.

Introducing this Bayesian formulation comes with
multiple advantages. First of all, the prior covariance ma-
trix Σα can be used to incorporate additional knowledge
about the signals to be recovered. This is discussed fur-
ther in Section III.V for our specific problem at hand. Sec-
ondly, the introduction of a prior guarantees that J̃−1

Ω (α̂S )
is well-defined even for the case that no measurements
are performed. Thus, optimization of sampling patterns
based on J̃−1

Ω (α̂S ) can be performed using both forward
and backward-selection approaches. This topic is dis-
cussed further in Section III.III.

Before formulating the proposed sampling pattern
optimization problem, we note that the approach de-
scribed in this section requires prior knowledge about
the sparsity structure of the signals to be recovered. To
obtain such an estimate, the method assumes the avail-
ability of a number of KT representative training signals.
In practice, each training signal has a different sparsity
structure, which leads to a different form of the matrices
U, R andΣα and thus to a different form of J̃−1

Ω . Following
this argumentation, our proposed method aims to mini-
mize the average variance of the oracle based estimators.
Thus, we are searching for a solution of the problem

Ω= argmin
Ω⊂Γ
|Ω|=M

KT
∑

k=1

tr
�

J̃−1
Ω,k (α̂S )

�

, (11)

where J̃−1
Ω,k denotes the inverse of the Bayesian FIM for

the k th-training signal. For later reference, we also intro-
duce the notations Uk , RΓ ,k and Σα,k , which refer to the
respective U, RΓ and Σα matrices associated with the k th

training signal.

III.III. Solution of the Sensor Selection
Problem

Solving discrete experiment design problems like (11)
is a difficult task because the problem at hand is a non-
convex integer programming problem. For their solu-
tion, different methods have been proposed. Some of
them reformulate the problem, such that it can be solved
using semi-definite programming [35–37]. Others em-
ploy greedy algorithms to iteratively add and or subtract
measurements from a given set of measurements [43,
44]. OEDIPUS uses a backwards selection algorithm,
which starts with Ω= Γ and iteratively removes measure-
ments until Ω contains the target number of measure-
ments [30]. In this work, we use a forward selection algo-
rithm, which starts with an empty set and iteratively adds
measurements until the target number of measurements
is reached [37]. For undersampling factors larger than
2 this is advantageous because the number of measure-
ments to add to Ω becomes smaller than the number of

Algorithm 1: Selecting one measurement

Input: set of candidate measurements Γ̃
current set of measurements Ω
inverse FIMs {J̃−1

Ω,k }
KT

k=1

matrices HΓ , Ψ and {Uk }
KT

k=1

covariance matrices {RΓ ,k }
KT

k=1

and {Σα,k }
KT

k=1

1: find the sensor j ∈ Γ̃ , which minimizes
∑KT

k=1 tr(J̃−1
Ω,k (α̂S ))

2: add j to Ω and update {J̃−1
Ω,k (α̂S )}

KT

k=1

3: remove j from Γ̃

Output: set of measurements Ω
inverse FIMs {J̃−1

Ω,k }
KT

k=1
remaining candidate measurements Γ̃

samples one would need to remove from the set of all
candidate measurements Γ .

The procedure for adding one measurement to a
given set of measurements Ω is summarized in Algo-
rithm 1. Here the main computational complexity arises
from the fact that the change in cost function needs to be
computed for each candidate measurement contained
in Γ̃ . When embedding Algorithm 1 into a full optimiza-
tion algorithm, one typically performs an exhaustive
search over all remaining candidates, whenever a mea-
surement is to be added to Ω. Thus, the change in cost
function needs to be computed on the order of O (M N )
times. For growing problem sizes, this leads to a signifi-
cant increase in computation time.

To alleviate this we note that one can often find mul-
tiple measurements, which lead to a similar decrease of
the cost function. Based on this assumption, we aim to
reduce computation times by temporarily restricting the
candidate set. Thus, given a temporary measurement
set Ω and the corresponding matrices {J̃−1

Ω,k }
KT

k=1, we pro-
pose the following batch-based procedure for adding
more measurements.

1. Compute the change in cost function for all candi-
dates in the candidate set Γ .

2. Form a batch Γ̃ containing the B candidates with
the largest decrease of the cost function in (11).

3. Iteratively add a number of MB measurements from
the batch Γ̃ as described in Algorithm 1.

In order to reach the target number of measurements,
the procedure needs to be repeated iteratively. The algo-
rithm obtained in this way is summarized in Algorithm 2.
Here the change in cost function needs to be computed
on the order of O (M N

MB
+M B ) times, which can be a quite

significant reduction depending on the chosen values
of B and MB .
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Algorithm 2: Greedy algorithm for sensor selec-
tion

Input: set of candidate measurements Γ
matrices HΓ , Ψ and {Uk }

KT

k=1

covariance matrices {RΓ ,k }
KT

k=1

and {Σα,k }
KT

k=1
number of measurements M
batch parameters B and MB

1: Ω←{}
2: {J̃−1

Ω,k }
KT

k=1←{Σα,k }
KT

k=1

3: for i = 1, . . . , M
MB

do
4: create a batch Γ̃ containing the B candidates

with the largest decrease of
∑KT

k=1 tr(J̃−1
Ω,k (α̂S ))

5: for k = 1, . . . , MB do
6: add one candidate from Γ̃ to Ω using

Algorithm 1
7: end for
8: end for

Output: set of measurements Ω

The choice of the batch size B and the number of
measurements to be added per batch MB are important
parameters to be set, when using the proposed method.
As a relevant limit, we note that the regular sequential
forward selection algorithm, is obtained when choosing
MB = 1 or B = |Ω|. On the other hand, one would ide-
ally like to pick MB as large as possible and B as small
as possible in order to minimize computation times. A
good strategy for choosing B and MB is to perform a
number of small test runs, where only a small number
of measurements are selected. By comparing the results
with the case MB = 1, one can determine a suitable set
of parameters, such that the computation time is mini-
mized without compromising the quality of the obtained
measurement set Ω.

III.IV. Numerical Implementation
As outlined before, the main numerical challenge in
Algorithm 1 is computing the change in cost function
tr(J̃−1

Ω (α̂S )) for all candidate measurements. Moreover, the
inverse FIM J̃−1

Ω (α̂S ) needs to be updated, once the best
candidate measurement has been identified. A naive
computation of these quantities would require the in-
version of multiple S ×S matrices. This leads to a high
computational complexity of O (KT |Γ̃ |S 3), which renders
the algorithm infeasible for large problem sizes.

To perform aforementioned computations efficiently,
we exploit the diagonal form of the noise-covariance ma-
trix. Under this assumption, (10) can be written as [30,
37]

J̃−1
Ω (α̂S ) =

�

Σ−1
α +

∑

j∈Ω

h∗α, j hT
α, j

r j

�−1
. (12)

Here hT
α, j denotes the j th row of the transformed mea-

surement matrix HΓΨ
†U. Thus, we see that adding a mea-

surement corresponds to a rank-1 update of the matrix
J̃Ω(α̂S ).

To efficiently compute J̃−1
Ω (α̂S ), we follow the ap-

proach described in [30, 37, 43] and apply the Sherman-
Morrison-Woodbury matrix inversion lemma [45] to (12).
For this purpose, let J̃Ω+ j (α̂S ) denote the FIM obtained
when the measurement with index j is added to the ex-
periment. Then, the resulting inverse FIM becomes

J̃−1
Ω+ j (α̂S ) = J̃−1

Ω (α̂S )−
J̃−1
Ω (α̂S )h∗α, j hT

α, j J̃−1
Ω (α̂S )

r j +hT
α, j J̃−1

Ω (α̂S )h∗α, j

. (13)

Hence, matrix inversion can be circumvented by com-
puting the matrix-vector products on the right hand side
of (13).

When computing the change in cost function, we are
only interested in the trace of J̃−1

Ω+ j (α̂S ). In this case, the
computations can be simplified even further. By making
use of the cyclic permutation invariance of the trace one
obtains

tr(J̃−1
Ω+ j (α̂S )) = tr(J̃−1

Ω (α̂S ))−
hT
α, j J̃−2

Ω (α̂S )h∗α, j

r j +hT
α, j J̃−1

Ω (α̂S )h∗α, j

. (14)

Thus, the computational complexity of Algorithm 1 is
reduced to O (KT |Γ̃ |S 2).

III.V. Application to MPI System Matrix
Calibration

To generate optimized sampling patterns for MPI system
matrices, we propose to use an exisiting fully sampled
system matrix as training data. The adapted pattern can
then be used for the accelerated measurement of other
system matrices. This setting is realistic because one reg-
ularly ends up having to measure new system matrices in
MPI. This happens for instance when using new particles,
performing measurements under different physical con-
ditions (e.g. different temperature) or when changing
acquisition parameters such as the drive-field amplitude.

Due to the MPI measurement process, all frequency
components of the system matrix are acquired jointly us-
ing the same sampling pattern. Thus, the training signals
should encompass a representative set of all frequency
components of the system matrix. At this point, it is
important to note that using all frequency components
quickly becomes impractical due to their large number,
especially for 3d system matrices. Hence, care needs
to be taken that the selection of frequency components
approximately covers the range of sparsity patterns that
occur. If this is not the case, the optimized patterns might
not perform well on unseen data. A simple way to en-
sure a sufficient diversity in the training data is to use a
number of pseudo-randomly chosen frequency compo-
nents. We propose to make this choice in combination
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Algorithm 3: Optimizing sampling patterns for
MPI system matrices

Input: system matrix S
fully sampled measurement matrix HΓ
sparsifying transform Ψ
number of measurements M
batch parameters B and MB

1: Γ ←{1, 2, . . . , N }
2: S̃← representative subset of KT rows from S
3: {Uk }

KT

k=1← sparsity patterns of the rows in S̃
4: Σs← signal variances for each voxel

5: {Σα,k }
KT

k=1←UH
k

�

Ψ†
�H
ΣsΨ

†Uk

6: {RΓ ,k }
KT

k=1← noise variances of S̃
7: Ω← choose M measurements using Algorithm 2

Output: set of measurements Ω

with an SNR threshold. The latter ensures that the cho-
sen frequency components contain a sufficient amount
of information.

A mechanism to incorporate further knowledge about
the signal class at hand is the prior covariance matrix Σα.
In this work, we chose Σα based on the observation that,
for MPI system matrices, the signal intensities are typi-
cally largest in the center of the DF-FOV. For positions
outside the DF-FOV, the signal intensities decrease be-
cause the field free point does not cover these regions.
To model this behavior in image space, we use a diagonal
covariance matrix Σs, with spatially dependent variance.
For each voxel, the latter is chosen proportional to the
variance of the training data at this position. Thus, we
use a covariance matrix of the form

Σs =µdiag
�

var({sk }
KT

k=1)
�

, (15)

where the variance is calculated componentwise and
over the set of KT frequency components included in
the training data. In order to apply it with the proposed
Bayesian FIM, Σs needs to be transformed into the space
spanned by the sparse coefficients αS . Thus, our prior
covariance matrix takes the form

Σα =UH
�

Ψ†
�H
ΣsΨ

†U. (16)

The full method, obtained when putting everything to-
gether, is summarized in Algorithm 3.

IV. Materials and Methods

IV.I. Experiments

In order to evaluate the proposed method, we used both
2d and 3d datasets. In both cases, two system matrices

were measured with different tracer materials. Respec-
tively, one of the system matrices was used to generate
optimized sampling patterns according to the proposed
method. For testing purposes, the other system matrix
was undersampled according to the obtained patterns
and system matrix recovery was performed using the
undersampled data.

All of the system matrices were measured with a
Bruker Preclinical MPI scanner. The two 2d system
matrices were measured using the MPI tracer perimag
(micromod Partikeltechnologie GmbH, Rostock, Ger-
many). The first one was measured using liquid parti-
cles, whereas the second one was measured using per-
imag particles that were immobilized using dental ce-
ment. Both system matrices were acquired with a FOV
of (30×30×1)mm3 and a grid size of 30 × 30 × 1. The
drive-field amplitudes were 12, 12, and 0 mT and the se-
lection field gradients were set to −1, −1, and 2 T m−1. In
these 2d experiments, the system matrix measured with
liquid perimag was used for the generation of sampling
patterns. Testing was performed using the system matrix
measured with immobilized particles.

Additionally, we used two 3d system matrices, which
are contained in the Open MPI Data repository (calibra-
tion datasets 6 and 7) [46]. For the first one the tracer
material was perimag, whereas synomag-D (micromod
Partikeltechnologie GmbH, Rostock, Germany) was used
for the second one. Both system matrices were acquired
with a FOV of (37×37×18.5)mm3 and a grid size of 37
× 37 × 37. The drive-field amplitudes were 12, 12, and
12 mT and the selection field gradients were −1, −1, and
2 T m−1. In the 3d experiments, we used the SM mea-
sured with synomag-D particles for the generation of
sampling patterns. For testing, we used the system ma-
trix measured with perimag particles.

IV.II. Sampling Patterns

In our study, the 2d SM with liquid perimag and the 3d SM
with synomag particles were employed to generate opti-
mized sampling patterns using the proposed algorithm.
For the training we applied an SNR threshold of 3 and
made a selection of 30 random frequency components
for the 2d case and of 15 random frequency components
for the 3d case. As sparsifying transform we chose the
DCT-II. To generate sparse approximations, a threshold
was applied to the transform coefficients. For the 2d (3d)
case we kept the 10% (2%) largest coefficients and used
their locations to form the corresponding U matrices.

Before fixing the covariance matrices of the measure-
ment noise and the prior distribution, we normalized all
frequency components by their `2-norm. The variances
for the prior distributions were then calculated accord-
ing to (16). The proportionality factor was set to µ= 3 for
both the 2d and the 3d case.

To fix the noise variances, we assumed a constant
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value r (sk ) for all sampling points. For its estimation
we further assumed that the signal stays approximately
constant in the corners of the FOV. This is a reasonable
assumption due to the size of the overscan used in these
measurements. The latter ensures that particles in the
corners of the FOV remain far from the FFP during the
measurement. Thus, their signal contribution is close
to zero and slowly varying in space. Based on this as-
sumption, we consider the outermost 3×3 voxels of each
corner for the 2d case and the outermost 3×3×3 voxels
for the 3d case. Now let sbg

k contain the values of the given
frequency component sk in these corner voxels. Then
our estimate can be written as

r (sk ) =





sbg
k − s̄bg

k







2

2




sbg
k







0
−1

. (17)

Here each entry in s̄bg
k corresponds to the mean of the

values in the corresponding corners of the FOV.
With the training data at hand, we used Algorithm 3,

to obtain adapted sampling patterns. For the 2d case,
this was done using a batch size of B = 180 and MB = 4.
For reference, we also generated a 2d pattern without the
use of batching (i.e setting B =N and MB = 1). For the
3d case, we used a batch size of B = 5000 and MB = 8.

IV.III. System Matrix Recovery
To test the generated patterns we generated correspond-
ingly undersampled data from the 2d SM with immobi-
lized perimag and the 3d SM with liquid perimag. For
the 2d experiment, we generated datasets with under-
sampling factors of 2, 4, 6, 8 and 10. For the 3d case we
consider an undersampling factor of 20. For comparison
we also generated PD sampling patterns with the same
undersampling factors. With the undersampled data at
hand, we used the Split Bregman method to solve the CS
problem (4) for all frequency components with SNR> 3.

For the 2d experiment, matrix recovery was per-
formed with a selection of regularization parameters

λ j =
�

2

5

� j

, for j = 3, . . . , 8.

For the 3d case the regulariziation parameter was manu-
ally chosen such that the mean normalized root mean
squared deviation (NRMSD) (see (19)) was minimized.
This resulted in a value of λ = 0.005 for the PD pattern
and a value of λ= 0.002 for the the optimized sampling
pattern. In all cases the solver was run for 50 inner and
10 outer iterations.

IV.IV. Experimental Evaluation
To evaluate the quality of the recovered system matrices,
we use visual inspection as well as several quantitative

error measures. Moreover, we use the recovered SMs
for image reconstruction. The resulting images serve as
an indicator for the kind of image quality that can be
obtained when the recovered system matrices are used
in actual applications.

As error measures for the recovered frequency com-
ponents and for the reconstructed images we use the
NRMSD and the structural similarity index (SSIM). For
a reference signal x and an approximation xapprox, the
former can be defined as

NRMSD(x, xapprox) =
‖x−xapprox‖2p

N ‖x‖∞
, (18)

with N being the number of elements in x. In contrast
to the NRMSD, the SSIM aims to quantify the perceived
similarity between both signals [47]. An aspect to keep in
mind here is that the SSIM was originally developed for
real-valued, non-negative images. Since the MPI system
matrix is complex-valued we compute the SSIM sepa-
rately for the real and imaginary parts and take the av-
erage of these two contributions. Moreover, we add a
constant offset to all data prior to the SSIM calculation.
This offset is chosen such that both real- and imaginary
parts of the data become non-negative. When evaluat-
ing complete system matrices we use the mean NRMSD
of the recovered frequency components as an aggregate
error measure

NRMSD(S, Sapprox) =
1

K

K
∑

k=1

NRMSD(sk , sapprox
k ). (19)

Here k runs over all frequency components. In the same
manner, we compute the mean SSIM and denote it by
SSIM.

For the image reconstruction, we used the 3d datasets
of the resolution phantom and the shape phantom con-
tained in the Open MPI Data repository. The drive field
amplitudes and selection field gradients for these mea-
surements correspond to the values used for the system
matrix measurement. Image reconstruction was per-
formed using the regularized Kaczmarz algorithm with
10 iterations and a relative regularization parameter [48]
of 0.0025.

IV.V. Code and Data Availability
Code and example data for the proposed method are
available at https://github.com/IBIResearch/
OptimizedSystemMatrixSampling.

V. Results

V.I. 2d System Matrices
The covariance matrix Σs is an important parameter of
the proposed method as it has a significant influence on
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Figure 1: Diagonal of the spatial prior covariance matrix Σs

obtained from the 30 frequency components used for generat-
ing the 2d sampling patterns.

the sampling density of the resulting patterns. In Figure 1,
we show its spatial representationΣs obtained using (15).
As expected, the signal intensity is largest in the center
of the FOV and decays towards its borders. Hence, one
can expect a similar spatial dependence of the sampling
density of the optimized patterns.

For illustration, we plot the obtained sampling pat-
terns, for undersampling factors 2, 6 and 10, in the mid-
dle and bottom row of Figure 2. Especially for the case
of 6- and 10-fold undersampling, one observes that the
sampling density is increased in the center of the FOV,
whereas it is decreased outside the DF-FOV. This observa-
tion can be explained by the spatially dependent variance
ofΣs employed in our model. Besides that, no additional
structures or clustering can be observed. Probably, this
reflects the diversity of frequency components used for
training. As a consequence, we expect the obtained sam-
pling patterns to be sufficiently robust to recover other
unseen frequency components with a similar spatial dis-
tribution of intensity.

We also note that the sampling patterns obtained
without batching, look almost identical to the ones ob-
tained with batching. This indicates, that the batching
approach can indeed be used to accelerate the solution
of problem (11) in our given setting, without significantly
altering the solution.

The spatially dependent sampling density has a direct
influence on the recovery error of the frequency compo-
nents. Due to the larger number of samples in the center
of the FOV, one expects smaller recovery errors in that
region. In contrast, the error might be slightly increased
outside the DF-FOV. When considering the system ma-
trices, recovered in our experiments, this behavior can
clearly be seen. As an illustration, we show a selection
of the recovered patterns in Figure 3, along with their
recovery error. The reduction of the error in the center of
the FOV can be seen for the frequency components with
k = 59 and k = 62.

Since the signal intensity tends to be largest in the
DF-FOV, the non-uniform sampling leads to an overall

r = 2 r = 6 r = 10

P
D

O
p

t
O

p
t

Fu
ll

Figure 2: Sampling patterns generated using Poisson disk
sampling (top row), the proposed method (middle row) and
the proposed method without batching (bottom row). The
patterns are shown for undersampling factors 2,6 and 10. For
reference, the borders of the DF-FOV are indicated by red lines.

decrease in recovery error. For the plotted frequency
components, this is reflected in the NRMSD values super-
imposed on to the corresponding plots. Additionally, we
plot the NRMSD of the recovered frequency components
in dependence of their SNR in the Box-Whiskers-Plot in
Figure 4. This plot shows an overall reduction in NRMSD
irrespective of the SNR of the frequency components. In-
terestingly, this reduction in NRMSD can be observed for
all regularization parameters considered, as can be seen
in the upper panel of Figure 5. Finally, it should be noted
that the effect of the non-uniform sampling becomes
more pronounced with increasing undersampling fac-
tors. This is understandable because the chance that a
random sampling pattern will miss a sample with high in-
tensity (i.e. with high information content) increases the
fewer the number of measurements. This relationship is
illustrated in the bottom panel of Figure 5 where we plot
the NRMSD in dependence of the undersampling factor.

V.II. 3d System Matrices
For the 3d experiment, the non-uniform distribution of
samples becomes even more apparent. As can be seen
in Figure 6, the sampling density in the center of the
FOV is increased whereas there are a reduced number
of samples outside the DF-FOV. At the large undersam-
pling factor considered in this example, this leads to a
clear improvement of the recovery within the DF-FOV.
This can be seen in the second and third row of Figure 7.
The residual structures in the error maps for the random
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k
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reference PD error PD (×2) Opt error Opt (×2)
3.41%/0.982

12.91%/0.794

6.91%/0.930

3.56%/0.977

10.59%/0.817

5.57%/0.941

Figure 3: Recovered frequency components from 6-fold undersampled data. The second and third column show the patterns
obtained from PD sampling and the respective error plots. The fourth and fifth column show the corresponding quantities
for patterns obtained using Algorithm 3. The NRMSD (in %) and the SSIM with respect to the fully sampled reference are
superimposed onto the plots. All plots in a given row are scaled to the same colorbar.
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Figure 4: Box-Whiskers plot showing the NRMSD of the 2d-
SMs recovered from 6-fold undersampled data. The boxes ac-
cumulate the 25% to 75% quantile. The numbers on top of the
SNR bins denote the number of frequency components con-
tained in them.

sampling indicate a bias which is absent in the recover-
ies using the optimized sampling patterns. On the other
hand, the left column shows a case where the recovery
error in the corners of the FOV is increased compared to
the PD sampling pattern.

As can be seen in Figure 8, optimizing sampling pat-
terns involves a trade-off caused by the different struc-

tures of the frequency components at hand. More pre-
cisely, it can be observed that the optimized sampling
pattern leads to an increased NRMSD, compared to the
random sampling patterns, for frequency components
with high SNR. In contrast the NRMSD is reduced for pat-
terns with SNR< 16 dB. Taking into account all frequency
components, the NRMSD is 5.37% for the random sam-
pling pattern and 5.00% for the optimized sampling pat-
tern. The corresponding values for the SSIM are 0.838
(random sampling) and 0.849 (proposed method).

The importance of accurately recovering the fre-
quency components with low SNR becomes evident,
when using the recovered system matrices for image re-
construction. The images obtained from the randomly
sampled SM contain an increased amount of noise, as
can be seen in Figures 9 and 10. For the optimized pat-
terns, the noise is clearly reduced. This improvement
is also reflected in the NRMSD and SSIM values on the
right side of the figures.

VI. Discussion

Our results show that CS based system matrix recov-
ery can be enhanced by using sampling patterns opti-
mized based on the Bayesian FIM. In contrast to pseudo-
random sampling, the optimized sampling patterns dis-
play a non-uniform sampling density, which takes into
account the increased signal intensity typically observed
in the FOV center as opposed to the borders of the FOV.
Thus, to the best of our knowledge, this is the first work
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Figure 5: NRMSD of the 2d-SMs in dependence of the reg-
ularization parameter λ for 6-fold undersampling (top) and
NRMSD in dependence of the undersampling factor (bottom).
For each undersampling factor, λ was chosen such that the
NRMSD was minimized for the respective method.

investigating variable density sampling for the recovery
of MPI system matrices.

In all of our tests, the optimized sampling patterns
resulted in a improved recovery of the system matrices
used for testing in terms of the NRMSD. A more detailed
look reveals that that the optimized pattern can lead to
a slightly worse recovery of frequency components with
high SNR, whereas the recovery is clearly improved for
patterns with a low SNR. An explanation is that frequency
components with high SNR are often associated with a
low mixing order and a slow signal decay outside the DF-
FOV. On the other hand, the frequency components with
low SNR often have a higher mixing order and a stronger
signal decay outside the DF-FOV. The latter frequency
components profit more from the denser sampling of
the DF-FOV, whereas the former are recovered more effi-
ciently using a more uniform sampling pattern. Overall
it should be noted that the bins with small SNR contain
a lot more frequency components than the ones with
high SNR, thus explaining the overall improvement in
NRMSD.

When using the recovered system matrices for im-
age reconstruction, one should keep in mind that the
frequency components with high mixing order play an
important role whenever the image to be reconstructed

z=19 y=19 x=19

P
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O
p

t

Figure 6: Sampling patterns generated using Poisson disk
sampling (top row) and the proposed method (bottom row)
for an undersampling factor of 20. The columns show cuts in
the x y -, x z -, and y z -plane respectively. For reference, the
borders of the DF-FOV are indicated by red lines.

contains a significant amount of high-resolution features.
In view of our previous discussion, this explains the im-
provement in image quality to be observed in our image
reconstruction experiments. Moreover, it indicates that
the proposed method can prove particularly useful, when
being used in a setting that targets high image resolution.

In the proposed method, the degree of non-
uniformity can be controlled with the parameter µ,
which determines the width of the prior distribution used
in our model. A smaller value of µ typically leads to a
higher degree of non-uniformity. In our experiments,
a value of 3 led to good results. For smaller values, the
decreased number of sampling points in the periphery
of the FOV may lead to a reduced accuracy of the SM
recovery, especially for frequency components with low
mixing order.

An interesting aspect of the obtained sampling pat-
terns is that overscanning the DF-FOV becomes inex-
pensive in terms of measurement time. Since the sam-
pling density is reduced outside the DF-FOV, it follows
that increasing the FOV would require only a compara-
bly small number of additional measurements. Such an
overscan of the DF-FOV is attractive because it reduces
signal leakage from particles outside the DF-FOV [39]. In
a multi-patch setting, the overscan can be used to gen-
erate overlap between patches. In turn, this leads to an
improved image reconstruction when using a suitable
multi-patch reconstruction scheme [49–51].

The sampling patterns obtained with the proposed
method depend on the sparsity structure of the system
matrix used to setup problem (11). One can expect that
the generated patterns generalize well to other system
matrices with a similar structure. Robustness can be
increased by using a larger number of frequency com-
ponents, which might even come from multiple SMs.
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Figure 7: Recovered frequency components from 20-fold undersampled data of a 3d system matrix. The second and third
column show the patterns obtained from Poisson disk sampling and the respective error plots. The fourth and fifth column
show the corresponding quantities for patterns obtained using Algorithm 3. The NRMSD (in %) and the SSIM with respect to the
fully sampled reference are superimposed onto the plots. All plots in a given row are scaled to the same colorbar.
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Figure 8: Box-Whiskers plot showing the NRMSD of the recov-
ered 3d-SMs. The boxes accumulate the 25% to 75% quantile.
The numbers on top of the SNR bins denote the number of
frequency components contained in corresponding bin.

Here an important aspect is that a significant part of the
structure of MPI system matrices is determined by the
field configuration and the measurement sequence used.
For instance, the oscillatory patterns which can be ob-
served in the system matrices used in this work are a
general property of FFP-based scanners with a Lissajous-
type FFP trajectory [52, 53]. In the DCT domain, these
patterns lead to the observation that the non-zero co-

efficients are contained in a bounded region contain-
ing the spatial frequency of the oscillatory pattern. Of
course finer details of the sparsity structure are depen-
dent on the particles at hand and in particular on their
magnetization curve. A further point to watch when us-
ing the proposed method is that the spatial dependence
of the signal intensities, which is used in (15), should
show a similar behavior for both the system matrix used
for training and the one to be recovered. Again, this spa-
tial dependence is strongly dependent on the particles’
magnetization curve.

Concerning aforementioned generalizability, our re-
sults illustrate that the adapted sampling patterns work
quite well for the recovery of system matrices measured
with other types of tracers. Importantly, our experiments
include the case where training was performed using
liquid particles and a system matrix measured with im-
mobilized particles was recovered. It is well known that
the transition from liquid to immobilized particles leads
to a significant change of the spatial structure of system
matrix patterns [15]. Nevertheless, the optimized sam-
pling patterns resulted in an improved accuracy of the
recovered system matrix in this challenging test case. For
use in practical applications, we believe that a prior char-
acterization of the particles to be used can help to make
sure that a trained pattern is only applied to system matri-
ces, whose structure is sufficiently similar to the training
data. Setting up such a system will be the subject of a
future study.

A potential alternative to the approach followed in
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Figure 9: Reconstruction of the Open MPI Data resolution
phantom using the recovered 3d system matrices. The columns
show cuts in the x y -, x z -, and y z -plane respectively. The
numbers next to the reconstructions denote their NRMSD (in
%) and their SSIM with respect to the reference reconstruction.
All plots in a given column are scaled to the same colorbar.

this work, is to directly generate sampling patterns with
a variable sampling density. Efficient algorithms for this
task are known and routinely used in MRI and computer
graphics [54, 55]. However, we note that such an ap-
proach would require extensive parameter tuning for
choosing the sampling density. Moreover, a new pattern
needs to be generated for every undersampling factor.
In contrast, the proposed method determines the sam-
pling density directly from the training data. Addition-
ally, it yields an ordered list of samples to be measured.
Thus, sampling patterns with varying undersampling fac-
tors can be generated simply by using the corresponding
number of measurements from that list.

We envision the proposed method to be used for an
offline computation of samplings patterns, which can
then be used for the measurement of other system ma-
trices. Therefore, numerical performance is not of prime
importance. We note however that the scaling of numer-
ical effort with growing problem sizes is a known issue
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Figure 10: Reconstruction of the Open MPI Data shape phan-
tom using the recovered 3d system matrices. The columns show
cuts in the x y -, x z -, and y z -plane respectively. The numbers
next to the reconstructions denote their NRMSD (in %) and
their SSIM with respect to the reference reconstruction. All
plots in a given column are scaled to the same colorbar.

of many CRB-based sensor-selection approaches. Using
the proposed optimization scheme, the computation of
sampling patterns took ∼10 s for the 2d SM and ∼7.5 h
for the 3d case. The proposed batching scheme lead to a
∼2-fold reduction of computation time for the 2d case
and a ∼4.5-fold reduction for the 3d case. All computa-
tions were performed using one thread on a workstation
equipped with two Intel Xeon CPU E5-2640 v3 CPUs run-
ning at 2.6 GHz and a main memory of 512 GB.

The method described in this work can contribute to
the acceleration of the calibration process in MPI and
thus save valuable time. The approach is very general
and we expect that it will prove beneficial for other scan-
ner architectures, such as single-sided MPI scanners,
which feature a fairly inhomogeneous sensitivity profile.
Another very interesting application is the measurement
of system matrices using non-delta samples as proposed
in [22]. Such approaches could probably be accelerated
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even more using our experiment design framework. Fi-
nally, it would be interesting to extend our framework to
the joint recovery of system matrices in a multi-patch set-
ting. In such a setting, even larger undersampling factors
could be achieved by exploiting the similarity between
patches [56]. An extension of our method could help an-
swer the question how to optimally sample the system
matrices in such a setting.
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