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Abstract
Some mathematical models of magnetic particle imaging include the Landau-Lifshitz-Gilbert equation that is
known to model the dynamic behavior of the magnetization vector in the micromagnetic theory. Bearing in mind
the fluid-structure interaction of the magnetic particles in a viscoelastic environment like blood or tissue, we discuss
a modeling approach of the underlying physics that takes a magnetoviscoelastic coupling into account. In particular,
we discuss applicability of models for the evolution of magnetoviscoelastic materials consisting of the incompress-
ible Navier-Stokes equations, an evolution equation for the deformation gradient and the Landau-Lifshitz-Gilbert
equation. We also consider potential implications of recent work by the authors about two-component magneto-
viscoelastic materials for an advanced mathematical modeling of magnetic particles embedded into viscoelastic
materials.

I. Introduction

Since the seminal article by Gleich and Weizenecker [1]
there has been an increased interest in establishing mag-
netic particle imaging (MPI), which has a huge potential
for applications in medicine and materials science [2].
Correspondingly, mathematical modeling of MPI has at-
tracted increasing attention in recent years. Here we
focus on models describing the dynamics of the suspen-
sion of magnetic particles. For related models on image
reconstruction, we refer to the recent articles [3,4].

For modeling the dynamics of the magnetization, the
choice of the transport of the magnetization vector is
crucial, cf. [5,6] and references therein. In particular
one distinguishes between so-called Brownian and Néel
particles. In Brownian particles, the magnetization vec-
tor is assumed aligned to the easy axis of the particle
and thus rotates together with the particle. Néel parti-
cles show a more involved evolution which is governed
by the Landau-Lifshitz-Gilbert equation, a well-known
equation in the context of the theory of micromagnetics.

The theory of micromagnetics takes short-range ex-
change interactions of the magnetization vector under
the influence of an external magnetic field into account,
cf. e.g. [7]. The dynamic equation governing the evolu-
tion of the magnetization is the Landau-Lifshitz-Gilbert
equation. Recently, a reduced version of this was incor-
porated into an inverse problem for MPI in order to take
relaxation effects of the magnetization into account [3].

In applications of MPI, single-domain magnetic par-
ticles interact with viscoelastic materials as for instances
blood or soft tissue. We think that it is important to take
the interaction of magnetic particles with a surround-
ing viscoelastic material into account, i.e., to consider
what is also called fluid-structure interaction. Up to our
knowledge this is a novel approach in MPI.

With this article we intend to initiate a discussion of
suitable fluid-structure interaction mechanisms in the
modeling of MPI. To this end we present two models
from the theory of magnetoviscoelasticity in Sections II
and III that may serve as a starting point.
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II. Model in the Eulerian setting

A well-known difficulty in the modeling of coupled sys-
tems of magnetic and elastic effects is that Maxwell’s
theory of electromagnetism is naturally defined in Eule-
rian coordinates (also referred to as spatial coordinates
or current configuration), while elasticity theory is based
on the concept of reference configurations and hence
is phrased in Lagrangian coordinates (material descrip-
tion). The function that maps the Lagrangian to the Eu-
lerian coordinates is called the flow map, see, e.g., the
introductions of our articles on the existence and unique-
ness of solutions [8,9,10,11].

The model that the second author of this article stud-
ied in recent years is defined on an arbitrary time inter-
val (0, T ) and a bounded smooth domain Ω ⊂ Rd , d =
2,3. The velocity of the moving material is denoted by
v : (0, T )×Ω→ Rd . The elastic properties are modeled
by the deformation tensor in Eulerian coordinates. In
linearized elasticity this would correspond to the elas-
tic strain. While the velocity is the temporal derivative
of the flow map, the deformation gradient is the spa-
tial derivative (gradient) of the flow map with respect to
the Lagrangian coordinate. The deformation gradient
transformed to Eulerian coordinates is then denoted by
F : (0, T )×Ω→ R(d ×d ). The magnetization is consid-
ered as a field and denoted by M : (0, T )×Ω→ R3 with
|M | ≡Ms for some saturation constant Ms > 0, i.e. M is
mapped to a ball of radius Ms .

We derive the system of partial differential equations
in a variational approach from the dissipation and the
total energy, which is the sum of the kinetic energy, the
elastic stored energy and the micromagnetic energy

∫

Ω

(A|∇M |2+ψ(F, M )−
1

2
H (M ) ·M −µ0M ·He x t )d x ,

where A > 0 is the exchange constant, µ0 > 0 the
magnetic permeability, ψ the energy density due to
anisotropy, which in our setting of magnetoelasticity
depends on M and the deformation tensor F . More-
over, He x t is the external magnetic field and H (M ) de-
notes the magnetic field. Without electric effects and cur-
rents, Maxwell’s equations reduce to∇·B = 0,∇×H = 0.
Here, B denotes the magnetic induction and satisfies
B = µ0(M +H ). Furthermore, we assume that the dy-
namics of the magnetization vector is governed by the
Landau-Lifshitz-Gilbert equation, see below.

We also take viscosity and incompressibility into ac-
count; for simplicity we assume the mass density to be
constant. Then we arrive at the following system of par-
tial differential equations that consists of (i) the incom-
pressible Navier-Stokes equations∇· v = 0 and

∂t v + (v ·∇)v =−∇p + v∆v +∇·τ+µ0∇T H (M )M

+µ0∇T He x t M

with the pressure p and the stress tensor

τ= ∂F W (F )F T −2A∇T M∇M + ∂Fψ(F, M )F T ,

where W denotes the elastic stored energy density. More-
over, the model consists of (ii) a transport equation for
the deformation gradient

∂t F + (v ·∇)F −∇v F = 0

and finally (iii) the Landau-Lifshitz-Gilbert equation
adapted to the transport ∂t M + (v ·∇)M of M :

∂t M + (v ·∇)M =−γM ×He f f −λM ×He f f ,

where the effective magnetic field is given by

He f f = 2A∆M − ∂Mψ(F, M ) +µ0H (M ) +µ0He x t

and γ > 0 is the electron gyromagnetic ratio, and λ > 0
is a damping parameter. This system is accomplished
with certain boundary and initial conditions. It models
magnetoviscoelastic materials and was mathematically
analyzed in various special settings, see [8,9,10,11].

The transport chosen for M is based on the assump-
tion that the magnetization exactly follows the flow of the
fluid. More advanced transports like a parallel transport
or a transport depending on the shape of the particles as
discussed e.g. in [12]will be addressed in future work.

III. Two-component systems
Here we present a different approach which treats the
magnetoviscoelastic material as a composite material
consisting of two components, one being viscoelastic
and the other being magnetoviscoelastic. This might
have applications to clusters of magnetic particles em-
bedded into human tissue.

In a two-component material let the components
("phases") be described by a ("order") parameter φ :
(0, T )×Ω→ [0,1] that is the difference between the vol-
ume fractions of the two components. For sharp inter-
face models,φ is supposed to satisfy a transport equation
while in the diffuse interface case, i.e. the case allowing
for a partial mixing of two fluids (which can model the
coating of the particles in MPI),φ solves a gradient flow
equation of Cahn-Hilliard nature. The parameterφ then
also enters into the stress tensor of the Navier-Stokes
equation and as prefactors of the terms involving F and
M . We refer to [13,14] for first analytical results in a set-
ting neglecting stress contributions from the deforma-
tion tensor. The article [13] concerns the partial mixing of
two magnetic fluids with matched fluid densities and the
mixing is described by a double well potential. Whereas
[14] deals with fluids undergoing partial mixing and hav-
ing unmatched densities; the mixing phenomenon is
modeled by a singular potential.
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IV. Conclusions
We presented two approaches to a mathematical model-
ing of magnetic particles in a viscoelastic material. For
both, results from mathematical analysis about the ex-
istence of solutions are available (at least for special
settings) [8,9,10,11,13,14]. However, there is a need to
further discuss appropriate assumptions on the fluid-
structure interaction relevant in MPI, which we wish to
initiate here. When successful, it will provide a more de-
tailed model of the dynamics of the magnetic particles
under the influence of an external magnetic field in med-
ical applications. On the long run, this might also have
an impact on related inverse problems.
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