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Abstract
Magnetic particle imaging (MPI) is a tracer imaging modality that detects superparamagnetic iron oxide nanoparti-
cles (SPIOs), enabling sensitive, radiation-free imaging of cells and disease pathologies. Preclinical MPI resolution
is limited to 1-2 mm (with ferucarbotran) due to scanner and particle constraints. Recent SPIOs have shown 10-fold
resolution and signal improvements at high concentrations, with unusually sharp magnetic responses. Dubbed
superferromagnetic iron oxide particles (SFMIOs), these particles appear to interact with neighbours, effectively
amplifying applied fields. SFMIO signal is highly dependent on the remanence of magnetically-generated SFMIO
superstructures. This work explores SFMIO remanence evolution after magnetic polarization, showing zero-field
decay around 120 ms, and various strategies for maintaining SFMIO behaviour that set the minimum scan speed
for in vivo usage. The resolution improvements provided by generating and maintaining SFMIO superstructures
will allow for 10-fold reduction in scanner field strength and thus a 100-fold reduction in cost.

I. Introduction

Magnetic particle imaging (MPI) is an emerging tracer
imaging modality that detects superparamagnetic iron
oxide nanoparticles (SPIOs), enabling sensitive, ionizing-
radiation-free imaging of cells, cancer, and gut bleed with
no background signal [1–3]. MPI resolution is limited to
1-2 mm (with ferucarbotran) due to practical scanner
and particle constraints [4]. Recent SPIOs have shown
10-fold resolution and signal improvements at high con-
centrations [5], with unusually sharp magnetic responses

(Fig. 1A). Dubbed superferromagnetic iron oxide parti-
cles (SFMIOs), these particles appear to interact with
neighbours, effectively amplifying applied fields. This
resolution improvement is crucial for MPI, as scaling cur-
rent preclinical scanners to human scale would require
scanner magnets with field strengths equivalent to 7 T
MRIs, precluding access for many healthcare settings.
With the resolution improvements offered by SFMIOs,
scanner field strengths could be reduced 10-fold while
maintaining 1-2 mm resolution in humans, allowing for
a 100-fold reduction in manufacturing cost.
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Figure 1: Characterizing SFMIO remanence decay: Magnetic
waveforms can be used to characterize the SFMIO magnetic
response (A). The prototypical pulse sequence (B, top) polarizes
the SFMIOs (i), allows the SFMIOs to sit at 0 field for some echo
time (TE) (ii, iii), and then reads out the resulting remanence
MTE (iv), as shown in the traversal in the MvH response (B,
bottom). The complete multi-echo sequence (C) concatenates
multiple primitives to measure remanence as a function of TE.

While SFMIOs offer incredible benefits, its properties
are highly dependent on the remanence of magnetically-
generated SFMIO superstructures [4]. It is thus critical
to investigate the evolution of SFMIO remanence dur-
ing the course of a standard MPI scan to preserve the
observed superresolution behaviour. This work charac-
terizes SFMIO remanence evolution after magnetic polar-
ization, using magnetic and mechanical forces, to inform
future MPI scan strategies, and demonstrates strategies
for managing SFMIO remanence.

II. Methods and materials
30-nm magnetite nanoparticles (SFMIOs) were synthe-
sized via thermal decomposition [6] and suspended in
hexane. 40 µL of SFMIOs, at estimated concentration of
12.1 mg Fe/ml, were measured in an arbitrary-waveform
relaxometer [7]. The point spread function (PSF) was
measured using 20 kHz fields of 1-8 mT, and SFMIO re-
manence decay was measured using custom pulse se-
quences (Fig 1). The prototypical sequence used to mea-
sure remanence (Fig 1B, top) traverses the SFMIO hys-
teresis curve(Fig 1B, bottom), first polarizing the sample
(Fig 1B, i) , then allowing the sample to sit at 0 mT for
some echo time TE (Fig 1B, ii-iii), then measuring the re-
sultant remanence MTE (Fig 1B, iv). The complete, multi-
echo sequence (Fig. 1C) concatenates said prototypical
pulses with increasing TE at 0 mT. Specifically, SFMIOs
were polarized using strong fields (Bpol = 30 mT, tpol =
30 s), and then measured with alternating trapezoidal
pulses (trise = 10µs, tdur = 2 ms, BTx = ±32 mT) with in-
creasing inter-pulse duration (TEi = [100µs, 80 ms]). The
resultant signal represents remanence as a function of
increasing echo time TEi , providing a surrogate mea-
surement of SFMIO remanence and its evolution of the
course of an MPI scan.

This pulse sequence was then modified to further in-

4 mT

8 mT

Steady State Image and PSFA B CNormalized MPI point spread function Remanence Decay of SFMIO signal

Figure 2: Characterization, zero-field remanence decay and
steady state behavior: The SFMIOs showed super-resolution
behaviour above 4 mT amplitude (A). When subjected to the
multi-echo pulse sequence (B), SFMIO remanence decayed
with τ≈ 120 ms. (C) Steady-state remanence was magnetically
and visually observed at t = 12 s, and was eliminated through
mechanical agitation

terrogate SFMIO remanence evolution. To assess decay
in scan environments, the remanence decay was mea-
sured at various steady-state fields (Bss = [−4 mT, 1 mT])
(Fig. 3A). To assess the importance of geometric and
structural integrity, the SFMIOs were also measured after
manual mechanical agitation of the sample.

III. Experiments
The SFMIOs demonstrated super-resolution PSFs for
BTx ≥ 4 mT (Fig. 2A). The MPI signal of SFMIOs ex-
ponentially decayed with increasing TE at 0 mT field
(τdecay ≈ 120 ms) (Fig. 2B), but did not fully lose super-
resolution behaviour (Fig 2B,C). At 12s (� 5τdecay), SFMO
signal remained, only losing super-resolution behaviour
after mechanical agitation (Fig 2C).

Fig. 3 shows the remanence evolution as a func-
tion of steady-state field for SFMIOs polarized in the
negative direction. When fields parallel to the struc-
ture were applied, the SFMIO signal showed minimal
decay. In comparison, applying zero field and minimal
anti-parallel fields showed greatly accelerated decay with
(τdecay ≈ 13 ms) in the fastest case.

IV. Discussion
As seen in the initial experiment in Fig. 2, these SFMIO
superstructures show remanence decay as a function
of time at 0 mT. While not so fast as to disrupt super-
resolution behaviour in standard MPI scans acquired at
a 20 mT amplitude and 20 kHz excitation frequency, the
variability of signal would be worrying for MPI properties
such as linearity, if not for the behaviour in response to
steady-state applied fields.

From Fig. 3, it is observed that fields parallel to SFMIO
structures reinforce the structures, and minimize decay
overall, allowing for consistent signal strength. In com-
parison, anti-parallel fields tended to severely accelerate
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Figure 3: Remanence decay under steady-state bias fields:
The multi-echo sequence was modified to have a steady-state
bias field (A). The resultant remanence (B) showed minimal
decay with fields parallel to the chains (negative fields in blue),
and accelerated decay with fields anti-parallel to the chains
(positive fields in yellow)

decay. As the magnetic potential energy generated by
fields antiparallel to a magnetic structure is at an un-
stable minimum, the decay may be due to the torque
generated on the SFMIO structures given any imperfect
alignment to the field, and may cause accelerated mis-
alignment from the measurement axis. However, during
the course of a standard MPI scan, SFMIO structures
tend to experience reinforcing fields, with zero or anti-
parallel fields only occurring between 0 mT and the coer-
civity of the SFMIOs (seen in Fig. 1(A)). This suggests that
a minimum scan speed for SFMIOs, with effective fre-

quency fmin ≈
Bcoercivity

BTxτ
≈ 2 Hz for a 20 mT amplitude field

and these 4 mT coercivity SFMIOs is needed to maintain
super-resolution behaviour.

These results have notable ramifications for both en-
capsulation and MPI scan strategies. The asymptotic
and long-term remanence of SFMIOs appear to be due to
the geometric alignment of SFMIO structures, and could
be dependent on the applied field and encapsulation
structure. However, the time-varying decay of SFMIO
signal is reassuringly mitigated by applied fields. These
results suggest that super-resolution behaviour will be
well maintained above a certain scanning slew rate, con-
sistent with previous investigations of SFMIO behaviour
as a function of drive frequency [5]. Future work should
further characterize delay patterns at fields, to generate
a map of τ(B ), to yield a better estimate of this mini-
mum scanning frequency for standard scans. Moreover,
the SFMIO reformation behaviour post magnetic transi-
tion should be investigated, to estimate maximum scan
speeds for SFMIOs.

V. Conclusion

This work investigated the signal evolution of SFMIO
particles post structure formation, and found signal de-
cay dependent on mechanical and mechanical agitation.
Based on our results, SFMIOs should be reinforced rather

than decay during the course of a standard MPI scan, en-
suring that minimal magnetics barriers are present for
translating the 10-fold resolution improvements to in
vivo usage. As more is understood about SFMIO signal
behaviour over the course of a scan, SFMIOs will be more
easily translated into in vivo usage. These developments
are crucial for the future of clinical MPI, through efficient
cost reductions and improved safety parameters.
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