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Abstract
Neural networks need to be trained with immense datasets for successful image reconstruction. Acquiring these
datasets may be a difficult task, especially in medical imaging. Data augmentation techniques are used to enlarge
an available dataset by synthesizing new data. In this work, it is proposed to use the single measurements of a
system matrix measurement in magnetic particle imaging for training a neural network for image reconstruction.
Before training, mixup augmentation is used to create linear combinations of the single measurements and thus,
enlarging the training dataset. Image reconstruction results using neural networks trained with an augmented
system matrix are compared to images that have been reconstructed using the conventional system-matrix-based
approach.

I. Introduction

Magnetic Particle Imaging (MPI) is a tracer-based med-
ical imaging modality that visualises the spatial distri-
bution of super-paramagnetic iron oxide nanoparticles
which serve as tracer material [1]. The tracer material is
excited by oscillating magnetic fields along its non-linear
magnetisation curve and the dynamic magnetisation of
the tracer is measured via an induced voltage signal. A
magnetic gradient field is applied for attenuating the
magnetisation of the tracer but in a small volume and
thus, spatial encoding is enabled. The measured voltage
signal can be reconstructed into an image representing
the spatial distribution of the tracer. For reconstruction,
there are mainly two methods that are currently used,
the system-matrix-based approach and x-space recon-
struction.

A third approach to image reconstruction is based on
neural networks, which have been used for reconstruc-

tion in medical imaging for different imaging modali-
ties. Neural network architectures have been utilised for
the fast and accurate reconstruction of 2D magnetic res-
onance (MR) images [2]. Convolution neural network
models [3] have been applied for an end-to-end positron
emission tomography (PET) image reconstruction [4].
Reconstruction of computed tomography (CT) images
by utilizing neural networks has indicated a significant
reduction of the image noise and improved contrast-to-
noise-ratio compared to iterative reconstruction meth-
ods [5]. In MPI, convolutional neural networks have been
used for reconstructing hybrid 1D and simulated 2D
data [6, 7]. In [8] the architecture of a neural network
has been used for regularising image reconstruction.

Before a neural network can be used for reconstruc-
tion, it needs to be trained employing sample input and
output data, which are measured raw data and idealised
or best-case reconstruction results. The performance
of the neural network relies on an extensive amount of
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training data. Acquiring training samples is usually a
challenging task especially in the medical imaging do-
main. A common solution to overcome the data scarcity
issue is data augmentation - a set of techniques that ex-
pands the initial input space by creating new synthetic
data based on the existing data. The objective of data
augmentation is to act as a regularization method and to
ensure that the model does not overfit the training data,
which leads to a better performance and robustness of
the network [9].

In this work, a hybrid 1D system matrix is used for
training a neural network. The data is augmented using
a mixup technique [10].

II. Methods and materials
The dataset used in this work is presented. It is explained
how the dataset can be used as training data for a neural
network. Then, the mixup technique for augmenting the
dataset is introduced. Last, the neural network that is
trained using the augmented data is presented.

II.I. Dataset
Two hybrid 1D system matrices have been measured in
a magnetic particle spectrometer [11]. The dataset is de-
scribed in [12] and has been used in [6, 12] to investigate
the spatial resolution in MPI and for neural-network-
based image reconstruction.

The dataset consists of two system matrices with
97 and 241 magnetic offset field positions, respectively,
within the range of [−12 mT, 12 mT]. The first system
matrix is used for training a neural network and for val-
idating the training. The second system matrix is used
for testing the image reconstruction by designing hybrid
phantoms [12]. It features a higher discretisation than the
first system matrix in order to represent partial volumes
in the reconstructed images.

For training a neural network, the first system matrix
is interpreted as 97 single measurements carried out at
different emulated spatial positions. These single mea-
surements serve as input data. As output data, 97 1D
images are created that have intensity values of 0 except
to the measurement position, where an intensity value
of 1 is stored.

A hybrid three-dot phantom has been created using
the second system matrix. Ground truth data is gener-
ated by mapping an intensity value of 1 for each single
measurement to the 97 pixel-grid. Due to the higher dis-
cretisation of the second system matrix, the intensity
value is split between the two nearest pixel-neighbours.

II.II. Augmentation
The dataset is modified using three augmentation steps.
First, random samples of the data are scaled using ran-

dom factors in the range [0, 1). Then, in order to train the
neural network for partial-volumes, linear combinations
of two neighbouring measurement positions are created.
Last, linear combinations of randomly selected data in
a batch are created which relates to the mixup augmen-
tation technique [10]. The last step is applied multiple
times and thus, the network is trained for measurements
of sophisticated (phantom) data.

II.III. Neural network

A neural network featuring two dense layers and three
convolutional layers has been created. As activation func-
tions, exponential linear units have been chosen. Before
the output layer, a rectified linear unit has been used for
inhibiting negative intensity values.

For evaluating the augmentation method, the neu-
ral network has been trained three times for 250 epochs
with the system matrix solely, the system matrix aug-
mented using randomly scaled positions and partial-
volume-augmentation, and last, using all the augmenta-
tion techniques. During training, 20 % of the data have
been used for validating the training process.

III. Results

The neural network has been trained and validated us-
ing first the 97 original measurements, second an aug-
mented dataset of 42,777 samples and third a mixup-
augmented dataset of 130,545 samples. The hybrid phan-
tom has been reconstructed using the trained neural
networks and a conventional system-matrix-based ap-
proach. The reconstruction results are visualised in Fig-
ure 1. For comparison, the idealised ground truth is dis-
played.

Reconstructing the phantom with a neural network
trained with a simple system matrix, a 1D image consist-
ing of zero-value entries is obtained. Thus, the neural
network has not reconstructed the phantom successfully.

Reconstructions are successful when the neural net-
work has been trained with an augmented dataset. The
single dots are reconstructed sharply. However, the inten-
sity values do not match the ground truth data precisely
in both cases. When augmenting the training set for par-
tial volumes and scaling, the positions of the dots are not
fully matched.

In comparison to the conventional reconstruction re-
sult using system-matrix-based reconstruction, the sin-
gle dots fit intensity values and positions better when
using neural network reconstruction with an augmented
training dataset.

Background artefacts cannot be identified using neu-
ral network reconstruction in contrast to the conven-
tional system-matrix-based approach.
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Figure 1: Reconstruction results of a three-dot phantom using neural networks trained with a system matrix (grey circles), a
system matrix augmented regarding partial volumes and different intensity values (dotted in red), and a system matrix augmented
using mixup techniques (blue). The ground truth and a conventional reconstruction result are visualised in black and green,
respectively.

IV. Discussion and conclusion
A three-dot 1D-phantom has been reconstructed suc-
cessfully with a convolutional neural network that has
been trained with an augmented dataset.

Neural network reconstruction is a promising ap-
proach to image reconstruction in MPI. Reconstructed
images may benefit from a higher quantifiability and spa-
tial resolution in comparison to the conventional system-
matrix-based approach. Furthermore, the image quality
may improve as background artefacts are not present in
the reconstructed images.

However, in this work only a three-dot 1D-phantom
has been reconstructed. The generalisability of the neu-
ral network needs to be examined by using more sophis-
ticated phantoms. Furthermore, neural network recon-
struction of measured multi-dimensional datasets needs
to be examined using the proposed method.
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