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Abstract
Proper modeling of the magnetization dynamics of the involved magnetic nanoparticles (MNPs) is still one of
the open challenges in magnetic particle imaging (MPI) particularly in the multi-dimensional excitation case of
Lissajous-type. In this simulation study we focus on the immobilized and oriented MNP case and we investigate
similarities and differences between the Fokker-Planck Néel model and an equilibrium model taking into account
uniaxial anisotropy.

I. Introduction

In MPI, proper modeling of the mapping from tracer con-
centration to induced voltage is still one of the open key
challenges particularly for multi-dimensional excitation
patterns such as Lissajous-type ones. One of the most
important ingredients required for a proper formulation
of this mapping is the dynamic behavior of the magnetic
nanoparticles’ magnetic moment in an applied magnetic
field in a large ensemble of nanoparticles contained in
the tracer material. Typically, two well-known mecha-
nisms, Brownian and Néel rotation, need to be taken into
account. In this context, the modeling strategy strongly
relies on the condition of the tracer, i.e., whether we con-
sider the fluid case or an immobilized setting. Recently,
the immobilized case has become of particular interest
as, on the one side, it allows for defining a new contrast
[1] and, on the other side, it requires consideration of
Néel rotation only for improved modeling [2]. The ap-
proach in the latter work relies on a Néel Fokker-Planck
approach (Néel FP model) to obtain a dictionary of mag-

netic moment simulations for various easy axis orienta-
tions when assuming uniaxial anisotropy. Furthermore,
a close similarity between the equilibrium model [3] and
the Néel FP model without anisotropy has already been
observed in [4]. This raises the immediate question for
an equilibrium model taking uniaxial anisotropy into ac-
count. In this work we address this question by formulat-
ing and comparing an equilibrium model with uniaxial
anisotropy (EQA) [5] to the Néel FP model.

II. Methods and materials

In a general MPI imaging experiment the setting is as
follows: LetΩ⊂R3 be the field-of-view containing MNPs.
A voltage induced by the MNPs’ in a receive coil with
sensitivity profile p : R3 → R3 in m−1 is approximately
given by

ṽM(t ) =−µ0

∫

Ω

c (r )p (r )T
∂

∂ t
m̄ (r, t ) dr (1)
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Figure 1: Two frequency components for the mixing orders κx = κy = 3,5 for the Néel model and the equilibrium model
with anisotropy for D = 24 nm, K anis = 4100 J/m3. Two different easy axis orientations are shown. This visualization employs a
colormap for complex numbers where the magnitude is represented by brightness and hue represents the phase [6]. For the 45°
case, the complex phases along a vertical line are compared in the rightmost column.

in V where c : Ω → R+0 in molL−1 is the concentration
of the magnetic nanoparticles and m̄ :R3 × [0, T ]→R3

in 10−3Am2 mol−1 is the molar mean magnetic moment.
The mean magnetic moment m̄ (r, t ) depends on the
applied magnetic field H : R3 × [0, T ] → R3 in Tµ0

−1,
which comprises a static selection field HSF : R3 → R3

and a dynamic drive field HDF : R3 × [0, T ] → R3, i.e.,
H (r, t ) =HSF(r ) +HDF(r, t ).

II.I. Néel model with uniaxial anisotropy

One important aspect in the model equation (1) is the
mean magnetic moment m̄ of the ensemble of nanopar-
ticles. For this, we follow the Fokker-Planck (FP) equa-
tion approach for the Landau-Lifshitz-Gilbert equation
as already described in [4]. From the general case as de-
scribed in e.g. [7], we arrive at the form below. For a
detailed discussion of the equation in the MPI context,
see [3]. We determine m̄ via the probability density func-
tion f :Ω×S2× [0, T ]→R+0 which is the solution to the
corresponding FP equation where S2 is the surface of the
sphere in R3. The mean is then given by

m̄FP-anis(r, t ) =m0

∫

S2

m f (r, m , t ) dm (2)

where f is the solution to the following specific case of a
convection-diffusion equation on the sphere

∂

∂ t
f = divS2

�

1

2τ
∇S2 f

�

−divS2

�

b f
�

(3)

where τ> 0 is the relaxation time constant and the (ve-
locity) field b : S2×R3×S2→R3 given by

b (m , H , n ) = p1H ×m +p2(m ×H )×m

+p3(n ·m )n ×m +p4(n ·m )(m ×n )×m (4)

where pi ≥ 0, i = 1, . . . ,4, are physical constants and n ∈
S2 is the easy axis of the particles.

A Néel rotation including uniaxial anisotropy is then

given by p1 = γ̃µ0, p2 = γ̃αµ0, p3 = 2γ̃ K anis

MS
, and p4 = αp3

with τ= VCMS
2kBTBγ̃α

and γ̃= γ
1+α2 . Here, VC is the core volume

of the nanoparticles depending on the core diameter
D , and we have saturation magnetization MS, damping
parameter α, Boltzman constant kB and temperature TB,
respectively. The uniaxial anisotropy constant is denoted
by K anis. We note that the parabolic partial differential
equation in (3) has no dependence on derivatives with
respect to the spatial variable r . It can thus be considered
as parametric with respect to r , respectively the constant
offset fields encoded in the selection field. The equation
is solved numerically by using a finite volume method
exploiting the computational toolbox provided in [8].

II.II. Equilibrium model with anisotropy
Over-simplified models like the standard equilibrium
model (see, e.g., [3]) do not take into account the particles’
anisotropy. But there exist equilibrium models that do
consider anisotropy [5], which we exploit as follows: The
probability function g : Ω×S2 × [0, T ]→ R+0 is given by
the Boltzmann distribution

g (r, m , t ) =
1

Z (r, t )
e β (µ0VCMSm ·H (r,t )+K anisVC (m ·n )2) (5)
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explicitly taking into account the Zeeman and the
anisotropy energy for given easy axis n ∈ S2 (β = 1

kBTB
).

Here, Z (r, t ) =
∫

S2 e β (µ0VCMSm ·H (r,t )+K anisVC (m ·n )2) dm is a
normalization factor such that g is a probability density
function with respect to m . The mean is then directly
computed by evaluating the following integral

m̄EQA(r, t ) =m0

∫

S2

mg (r, m , t ) dm . (6)

Exploiting spherical coordinates, four 2D integrals have
to be solved computationally for any tuple (r, t ).

In order to compare the two models, we simulated
an MPI system matrix for an 11×11 pixel 2D grid with a
Lissajous trajectory for both cases. The simulations were
carried out for different fixed easy axis orientations and
different values for K anis and D . Particle and scanner
parameters are chosen according to [2].

III. Results
For comparing the simulation results, we chose the fol-
lowing error metric whose results are illustrated in Ta-
ble 1: for each pixel, the ratio between the mean absolute
error of ∂t m̄ = ∂

∂ t m̄ and its maximum amplitude in the
Néel case is computed in the time domain. Then, the
maximum of these errors is taken over all pixels r ∈ Ω̂⊂Ω
and easy axis orientations θ ∈ Θ̂:

err= max
θ∈Θ̂,r∈Ω̂

T −1
∫ T

0
|∂t (m̄θ

FP-anis(r, t )− m̄θ
EQA(r, t ))|1 d t

‖∂t m̄θ
FP-anis(r, ·)‖∞

.

Table 1: Errors of (EQA) relative to the Néel model for different
core diameters and anisotropy constants, and blocking diame-
ters Dbl for each K Anis.

K Anis[J/m3]/D [nm] 16 20 24 Dbl[nm]
1100 5e-4 7e-4 1e-3 47
2100 5e-4 1e-3 3e-3 38
3100 6e-4 2e-3 9e-3 34
4100 7e-4 3e-3 2.5e-2 31
5100 9e-4 6e-3 5.4e-2 28
6100 1e-3 1.2e-2 0.15 26
7100 2e-3 2.5e-2 0.43 25

For smaller core diameters and anisotropy constants,
the results from (EQA) differ only very slightly from the
full Néel solution. However, for large values of D and
K Anis, the anisotropy energy barrier is larger than the
thermal or applied magnetic energy and the particles
enter a (partially) “blocked” state, exhibiting hysteresis
and losing their superparamagnetic properties [9], which
leads to large errors made by the EQA model. The critical
blocking diameter Dbl can be calculated for given K Anis,
temperature and excitation frequency and is shown in
Table 1.

An example for intermediate parameter values is dis-
played in Fig. 1. Here, two frequency components for the

FP as well as the EQA case are shown for two different easy
axis directions. The frequency k is expressed in terms
of the mixing orders k (κx ,κy ) = κx Ndens+κy (Ndens+1),
where Ndens is the parameter controlling the density of
the Lissajous pattern. While the results are similar, a
slight phase shift can be seen between the two simula-
tions, especially for the larger one of the two frequencies.
As Table 1 suggests, these phase shifts are nearly nonex-
istent for small parameters and become very significant
for large ones.

IV. Discussion and conclusion
This work builds the initial step to explore the possibili-
ties to use an equilibrium model-based approach in the
dedicated application of immobilized nanoparticles in
MPI. The results indicate that this can be done for a cer-
tain range of particle parameters keeping the relative
error below 1% when compared to the FP Neél model.
This fosters the way for immediate future research on
a validation on measured data and the development of
coupled models taking into account the presented equi-
librium model with uniaxial anisotropy.
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