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Abstract

X-space reconstructions suffer from blurring caused by the point spread function (PSF) of the Magnetic Particle
Imaging (MPI) system. Here, we propose a deep learning method for deblurring x-space reconstructed images. Our
proposed method learns an end-to-end mapping between the gridding-reconstructed collinear images from two
partitions of a Lissajous trajectory and the underlying magnetic nanoparticle (MNP) distribution. This nonlinear
mapping is learned using measurements from a coded calibration scene (CCS) to speed up the training process.
Numerical experiments show that our learning-based method can successfully deblur x-space reconstructed images

across a broad range of measurement signal-to-noise ratios (SNR) following training at a moderate SNR.

. Introduction

There are two main reconstruction methods in magnetic
particle imaging (MPI): system function reconstruction
(SFR) and x-space reconstruction. SFR requires calibra-
tion measurements from each voxel in the field-of-view
(FOV) [1]. These lenghty calibration measurements need
to be repeated whenever a scanning parameter or the
magnetic nanoparticle (MNP) tracer is changed. One
approach to speed up the calibration process is to per-
form compressed sensing (CS), at the expense of reduced
signal-to-noise ratio (SNR) efficiency [2]. A recent study
has proposed a coded calibration scene (CCS) with mul-
tiple MNP samples distributed in a pseudo-random but
connected fashion [3]. Utilizing a CCS instead of a point
source sample can simultaneously speed up the calibra-
tion process and boost SNR efficiency.

In contrast to SFR, x-space reconstruction does not
require calibration measurements, as it directly grids the
speed-compensated received signal to the instantaneous
location of the field free point (FPP). However, x-space
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reconstruction produces blurred images due to the point
spread function (PSF) of the imaging system [4].

Here, we introduce a deep-learning model to reduce
the blurring in x-space reconstructed images. For prac-
ticality, we propose to train the model using a single,
realistic CCS with vessel-like structures.

Il. Methods and materials

For model training, we used a CCS of size 7.14x7.14 cm?
consisting of continuous channels with varying particle
concentrations and thicknesses, as shown in Fig. 1a. This
CCS is considerably larger than the targeted 2x2 cm?
FOV. Therefore, distinct MNP distributions can easily be
achieved by gradually rotating and sliding the CCS, as
proposed in [3]. Following this approach, 3300 distinct
measurements were acquired from the CCS, which were
divided into training and validation sets as (3000,300).

Numerical Experiments
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Figure 1: (a) The CCS and (b) the model block diagram. A sample 2x2 cm? FOV is marked with the red square. The block
diagram shows the 45° and 135° collinear images gridded from the two partitions of the Lissajous trajectory at SNR = 20, the
network output and the ground truth MNP distribution. The proposed model is based on a residual neural network (ResNet)
backbone trained with pixel-wise and perceptual losses. The network consists of 9 ResNet blocks.
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Figure 2: (a) A-shaped phantom and x-space gridding recon-
structions of collinear images from (b) 45° and (c) 135° parti-
tions of the Lissajous trajectory at SNR = 20.

We also used a A-shaped phantom shown in Fig. 2a to
test the performance of the model.

In MPI simulations, selection field gradients of (3, 3,
-6) T/m were utilized, together with a Lissajous trajec-
tory with drive field frequencies of 24.75kHz and 25 kHz
along the x- and y-directions, respectively. This trajec-
tory scanned a 2x2 cm? FOV, discretized into a 280x280
grid. For image reconstruction, first the Lissajous trajec-
tory was partitioned into two non-overlapping segments
corresponding to approximately 45° and 135° scanning
angles. For each partition, the virtual collinear coil signal
was utilized in an automated gridding reconstruction for
non-Cartesian x-space MPI [5].

To analyze the noise performance of the proposed
model, additive white Gaussian noise (AWGN) was added
at the x- and y- receiver coil signals to maintain SNRs
ranging between 5 to 40. At each test SNR level, Monte
Carlo simulations with 100 repetitions were performed.
SNR was defined as the ratio of the maximum signal in-
tensity during the acquisition of the training data from
the entire CCS and the standard deviation of the AWGN.

I1.1l. Deblurring Model

We devised a deblurring model based on the residual neu-
ral network (ResNet) backbone [6] adopted from [7] to
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deblur x-space reconstructed images (see Figure 1b). The
network was trained to minimize pixel-wise ¢, and per-
ceptual losses with equal weights, the latter referring to
the ¢;-norm distance of activation vectors in the second
Visual Geometry Group (VGG) network layer [8] between
the model output and the ground truth image. This per-
ceptual loss was adopted since it is suggested to improve
realism in image processing tasks [9]. Training the net-
work for 10 epochs on a GeForce RTX 2080 GPU took
approximately 20 minutes.

Our model learns an end-to-end mapping from the
two partitioned collinear images to the underlying MNP
distribution. To achieve a quantitative mapping of the
MNP concentration, we normalized the partitioned im-
ages in a given pair by the maximum pixel intensity in
their average to construct model inputs. The model out-
put was then rescaled back to restore the original inten-
sity range. These pre- and post-scaling steps improved
model performance for phantoms with different con-
centration ranges. The negative pixel intensities of the
output image were set to zero, since MNP concentration
is non-negative. These operations can be expressed as:

_ [Colys, Colyss]
max(Col,s+Colyzs5)/2

1)

Y =max(0, T(X)) max(Colys+ Coly35)/2 2)

X is the two-channel model input, T(X) is the model
output, and Y is the final estimate of MNP distribution.
We trained the model on 3000 distinct measurements
acquired from the CCS and evaluated its performance
on the A phantom. For image quality assessment, we
utilized the peak signal-to-noise ratio (PSNR) metric:

M N max(I)?
M ~—N
D et 2t Ty — Ye 2

Here, I is the ground truth MNP distribution, and M and
N denote image dimensions.

3)

PSNR =10log,,
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Figure 3: Model output for the A phantom at various training
(rows) versus test (columns) SNR levels.

I1l. Results & Discussion

Figure 3 shows representative reconstructions at various
training and test SNR levels. A main difference between
the training CCS and the A phantom is that the MNP
distribution in the phantom is considerably sparse with
broad background regions. As a result, a model over-fit
to the CCS tends to predict channel-like structures in the
background. In particular, the model trained at SNR = 30
generates a considerable amount of artifacts. Moreover,
the high-SNR model generalizes poorly to SNR =10, as
it expects low noise levels and is therefore likely to mis-
take noise for a structure. Model training at lower SNRs
helps mitigate both problems: The model trained at SNR
= 10 produces substantially lower background artifacts,
and shows improved generalization performance. Fig-
ure 3 also shows that the model trained at SNR = 10 is
unable to recover the disconnected part near the top of
the A phantom. In addition, at all SNR levels, the forking
structure of the A phantom is slightly disconnected. This
artifact is likely due to the lack of such a forking structure
in the CCS and could be improved by modifying the CCS.
Figure 4 illustrates the noise robustness of the pro-
posed model as a function of training and test SNR levels.
Our results indicate that models trained at moderate SNR
levels (preferably SNR ~ 10-15) more reliably generalize
across noise levels. Furthermore, it is beneficial to use a
training SNR that is relatively lower than the test SNR.

IV. Conclusion
In this work, we proposed a deep-learning model to de-

blur MPI images in x-space reconstructions. This model
is trained using a CCS to facilitate measurements for the
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Figure 4: Noise robustness of the proposed model as a function
of training and test SNRs. Mean PSNR for the A phantom is
displayed as a color map for Monte Carlo simulations with 100
repetitions at each test SNR level. PSNR for the noise free case
is also displayed for reference.

training procedure. The noise robustness analysis of
the proposed method reveals that the model should be
trained with noisy images, at SNR levels around 10-15.
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