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Abstract
To avoid the time consuming process of measuring the system function of magnetic particle imaging, model-based
system matrix simulation is an alternative. However, this is a complex procedure leading to model imperfections,
which influence the accuracy of the resulting system matrix as well as the quality of the image reconstruction.
Standard reconstruction algorithms like regularized Kaczmarz are not able to take this inexactness into account
and produce poor quality images. The RESESOP-Kaczmarz algorithm is a novel image reconstruction method,
which can factor in model imperfections or dynamics. We examine and discuss the compensating characteristics of
RESESOP-Kaczmarz regarding model inexactness in magnetic particle imaging.

I. Introduction

A main problem of interest in Magnetic Particle Imag-
ing (MPI) is the determination of the system function.
The measurement-based approach is the most accurate
method; however, it has many drawbacks. The calibra-
tion scans consume a lot of time and each imaging se-
quence needs a separate acquisition. The alternative is a
model-based approach. It allows the simulation of the
system matrix at arbitrarily fine sampling grids and does
not need the time consuming calibration procedure. A
research goal of MPI is the improvement of the accuracy
of the model-based approach but inaccuracies in the
system function may lead to severe loss of quality in the
image reconstruction.

After determining the system matrix, it is necessary to
reconstruct an image from measured data. One common
solver is the regularized Kaczmarz method [1], which
works well if applied to a static, measurement-based case.
However, reconstructing images from less perfect data or
system function via Kaczmarz leads to poor results. This

lack of quality can be caused by a lot of noise or motion
during data measurement or model inexactness using
the model-based concept.

A promising approach to deal with model imperfec-
tions is the idea to consider errors of the model in the
reconstruction process. This can be done, for instance,
via the RESESOP-Kaczmarz algorithm which was moti-
vated by an application to dynamic imaging problems
[2]. In this context, the method interprets the motion
of the examined phantoms as model inexactness. Thus,
the algorithm does only need an estimation and not the
exact information of the dynamics.

The goal in this article is to interpret the less accu-
rate determination of the system matrix using the model-
based approach as a model inexactness in the RESESOP-
Kaczmarz algorithm and to examine in what way it is
able to compensate model imperfections.
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II. Methods
We consider a fully simulated numerical experiment,
where the ground truth operator (GT) is generated with
the model presented in [3] as Model B3. This simulated
system matrix consists of dynamic simulations of Néel-
type particle magnetization dynamics, where the uniax-
ial particle anisotropy is dependent on the position in
the field of view. While the anisotropy is very small in
the center, it grows larger towards the boundaries. This
is motivated by the structure of the applied field in MPI,
where the static part is assumed to lead to physical rota-
tion of the particles and affect their combined anisotropy
energy landscape.

The second model operator (AO) is obtained by sim-
ulating the Néel response for a fixed anisotropy constant
K anis = 625 J/m3 and different orientations, then taking
the average of the orientations. Both system matrices are
simulated using the toolbox presented in [4].

II.I. Image Reconstruction
It is necessary to solve the linear system (here formulated
in time domain)

Ac = v, A ∈RM×N , c ∈RN , v ∈RM

to compute concentration c from measured data v with
system matrix A. This is an ill-posed inverse problem
and has to be solved accordingly by special algorithms.

A common solver in MPI is the Kaczmarz method with
Tikhonov regularization. The algorithm mainly consists
of a fixed point iteration. Further information can be
found in the literature, see, e.g., [1].

RESESOP-Kaczmarz is an alternative solver, which
can take model inaccuracies into account. It is based on
the sequential subspace optimization method (SESOP)
[5]. As subspaces, we consider hyperplanes and stripes
(u ∈ X ;α,ξ ∈Rwith ξ> 0):

H (u ,α) = {x ∈ X : 〈u , x 〉=α},
H (u ,α,ξ) = {x ∈ X : |〈u , x 〉−α| ≤ ξ}.

Furthermore, the metric projection onto a hyperplane
in Hilbert spaces can be written as

PH (u ,α)(x ) = x −
〈u , x 〉−α
‖u‖2

u .

The main idea of SESOP is to approximate the searched-
for solution iteratively with metric projections onto in-
tersections of hyperplanes.

However, this algorithm does not take noisy data or
model imperfections into account, which we character-
ize in the following by levels δ,η ∈R:

Noisy data: ‖v − v δ‖ ≤δ,

Inexact forward operator: ‖A−Aη‖ ≤η.

It is possible to modify SESOP with a form of regular-
ization. Instead of projecting the approximate solution
onto intersections of hyperplanes, regularized SESOP
(RESESOP) projects onto intersections of stripes. The
width of the stripes is chosen in dependence of the level
of model inexactness and noise. Morozovs discrepancy
principle introduces a stopping criterion; as a result, it
can be proven under certain conditions that the method
is a regularization [6].

Furthermore, RESESOP can be combined with the
Kaczmarz method. While RESESOP enables the usage of
local properties of the inverse problem in the regulariza-
tion (such as local model inexactness levels), Kaczmarz
allows the algorithm to combine such local information
from K subproblems, which arise for instance through
multiple trajectories or dynamics, and apply it to improve
the solution.

An important part of the algorithm are the search
directions, which span the hyperplanes and enable con-
vergence. A suitable choice is the product of the adjoint
system matrix and the corresponding residuum. The
number of search directions is not further specified; how-
ever, two are a common choice and in practice a good
compromise between complexity and quality of solution.

Algorithm 1 is a general form of the RESESOP-
Kaczmarz method. One full iteration consists of K subit-
erations, which include a metric projection onto a stripe.

Algorithm 1 RESESOP-Kaczmarz

Choose c0 and constants ρ > 0,τk > 1 with k ∈K . Let
n be the iteration index.
while cn 6= cn−K for n mod K = 0 do

if ||Acn − v η,δ
[n ] || ≤τ[n ](η[n ]ρ+δ[n ]) then

cn+1 = cn

else
Choose finite index set In ⊂ {0, 1, . . . , n}
Choose wn ,i for all i ∈ In and determine search
directions un ,i = A∗wn ,i

Define H η,δ
n := ∩

i∈In

H (un ,i ,αn ,i ,ξn ,i )

with parameters αn ,i = 〈wn ,i , v η,δ
[i ] 〉 and ξn ,i =

(η[i ]ρ+δ[i ]) ∗ ‖wn ,i ‖
Compute cn+1 = PH η,δ

n
(cn )

end if
end while

III. Experiments

We have simulated two different system matrices GT and
AO of size 61× 61× 5 voxels as described in section II.
We used a resolution of the grid of 0.5 mm, with a 2D
Lissajous excitation and anisotropy constants of up to
1250 J/m3. The data was simulated on a slightly shifted
63×63×7 grid and some Gaussian noise was added.
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The three dimensional phantom consists of three
cylinders. They are located in three different positions:
One of it is close to the center, one close to a corner and
the last close to a boundary.

Using the regularized Kaczmarz method, images are
reconstructed with GT as well as AO. Additionally, the in-
verse problem involving AO is solved with the RESESOP-
Kaczmarz algorithm. The level of model inexactness is
computed as a scaled relative error of AO compared to
GT.

IV. Results
Figure 1 depicts results of the above described experi-
ments.

(a) Phantom (b) GT - regularized Kaczmarz

(c) AO - regularized Kaczmarz (d) AO - RESESOP-Kaczmarz

Figure 1: Reconstructions with different operators and meth-
ods of phantom 1a. We depict the same slice of each 3D solu-
tion.

If we compare figures 1b and 1c, the influence of
model imperfections onto image reconstruction is vis-
ible. While the cylinder located close to the center is
reconstructed very similarly, concentrations at bound-
aries and especially at corners are depicted blurred and
inexact when computed with AO. Furthermore, false ar-
tifacts are visible in corners.

The image computed by RESESOP-Kaczmarz with
AO shows a better reconstruction. The cylinder in the
corner has a round shape and there are no distinctive
false artifacts. However, the concentrations are blurrier
than the ones reconstructed with GT.

The results observed in the reconstructions can be
understood if we examine the relative error of AO com-
pared to GT, which is shown in figure 2. At the center of
the field of view, there is almost no difference between
the operators, whereas the errors are larger at the bound-
aries, especially in the corners. Therefore, all three re-

Figure 2: One slice of the relative error of AO compared to GT.

constructions show comparable results at the center of
the images.

However, this is not the case at boundaries and
corners, where the model imperfections heavily influ-
ence the quality of the image. RESESOP-Kaczmarz in-
cludes model inexactness in its reconstruction and hence
reduces its influence. This shows the advantage of
RESESOP-Kaczmarz compared to regularized Kaczmarz.

V. Conclusion
The RESESOP-Kaczmarz method is a promising algo-
rithm to compensate model imperfections. Our numeri-
cal results illustrate its potential in improving the model-
based reconstruction approach in MPI.

Since the approach only relies on rough estimates
instead of exact information regarding the model inex-
actness, it can further be applied in various cases. This
includes the reconstruction of dynamic phantoms or a ro-
bust reconstruction method with fully measured system
matrices. Furthermore, ongoing work is the validation
on real data as well as the transfer of the algorithm onto
frequency space.
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