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Abstract
In order to measure larger volumes in magnetic particle imaging, it is necessary to divide the region of interest into
several patches and measure those patches individually due to a limited size of the field of view. This procedure
yields truncation artifacts at the patches boundaries during reconstruction. Applying a regularization which takes
into account neighbourhood structures not only on one patch but across all patches can significantly reduce those
artifacts. However, the current state-of-the-art reconstruction method using the Kaczmarz algorithm is limited
to Tikhonov regularization. We thus propose to use the stochastic primal-dual hybrid gradient method to solve
the multi-patch reconstruction task. Our experiments show that the quality of our reconstructions is significantly
higher than those obtained by Tikhonov regularization and Kaczmarz method. Moreover, using our proposed
method, a joint reconstruction considerably reduces the computational costs compared to multiple single-patch
reconstructions. The algorithm proposed is thus competitive to the current state-of-the-art method not only
regarding reconstruction quality but also concerning the computational effort.

I. Introduction
The relation between the particle distribution and the
received signal in magnetic particle imaging (MPI) can be
described by a linear operator. We thus have to solve an
ill-posed linear system to reconstruct a magnetic particle
image. The discrete inverse problem is of the form

S c = u ,

where S ∈ R2K ×N is the measured forward operator,
i.e. the system matrix of MPI in the frequency domain,
c ∈ RN is the unknown concentration to be recovered
and u ∈R2K contains the Fourier coefficients of the re-
ceived signal. By N we denote the number of points
measured in space and K is the number of frequencies.
Note that we split the matrix and the data into their real

and imaginary parts to be able to exploit the structure of
our algorithm and reduce the computational complexity
of each iteration step.

Due to physiological constraints, the covered field of
view (FOV) in MPI is limited to a few cubic centimeters.
To be more precise, the size of the field of view is propor-
tional to the quotient of the drive-field amplitude and
the gradient strength. It can thus be enlarged either by
lowering the gradient strength, which leads to a loss of
resolution [1], or by increasing the drive-field amplitude.
However, the amplitude is limited by power loss, tissue
heating [2] and peripheral nerve stimulation [3, 4]. It is
thus necessary to perform multi-patch measurements
to capture a larger volume. For that purpose, additional
low frequency focus fields are used to continuously or
step-wise relocate the area covered by the field-free point
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(FFP). In this work, we only consider the static focus field
approach, where the FFP trajectory center is shifted in
between individual measuring sequences. The total re-
gion of interest can then by seen as a patchwork of the
FOVs at different positions. We thus call the FOV covered
at a certain FFP position a patch.
Reconstruction of multi-patch data is an important field
of research and various approaches have been proposed.
First of all, one can combine patch-wise reconstructions
in a post-processing step [5]. When reconstructing drive-
field patches separately, artifacts at the borders occur
as well as stripe artifacts, when overlapping measure-
ments are taken [6]. Joint reconstruction of the different
patches yields artifact-reduced images, but the need of
storing one system matrix (SM) measured on the full
FOV, i.e. over all patches, per patch poses huge memory
requirements and is very time-consuming in the calibra-
tion process [7]. Exploiting the sparsity of that joint sys-
tem matrix and reusing a single calibration scan reduces
the computational effort from scaling quadratically with
the number of patches to scaling linearly [8]. However,
to apply that approach shift invariance of the system
matrices has to be assumed, which holds only for ideal
magnetic fields, but has to be generalized for large field
imperfections. Boberg et. al. perform this generaliza-
tion by applying a clustering in similar matrices, where
within each cluster the shift invariance holds in good
approximation [9]. In [10] the authors propose to use
the approximation error method in order to model the
truncation error at the patches’ boundaries. This allows
for single patch reconstructions or could be combined
with the previous approaches.

In this work, we do not focus on how to efficiently
measure, store and process system matrices but we focus
on reconstruction algorithms. Solving the linear prob-
lem with direct methods comes with a cubic complexity,
which is not sufficient to reach real-time reconstruction
even in the single patch case [11]. Iterative methods,
in contrast, rely on matrix-vector multiplications and
thus have only quadratic complexity, which make them
a lot more favorable in MPI reconstruction. The state-of-
the-art reconstruction method in Lissajous-type MPI is
the Kaczmarz method combined with Tikhonov regular-
ization and a non-negativity constraint. The Kaczmarz
method provides a very fast convergence for solving the
MPI imaging equation [11–13]. To allow a more flexible
regularization various reconstruction algorithms based
on modern splitting approaches using proximity oper-
ators such as ADMM [14–16], forward-backward split-
ting [17] and primal-dual splitting [18] have been pro-
posed for single-patch MPI reconstructions. In [16], the
ADMM method uses Kaczmarz method to solve the oc-
curring subproblems, which obviously results in a longer
runtime than Kaczmarz method combined with early
stopping. However, it is shown to outperform a lot of algo-
rithms as the CG method, (forward-backward) splitting

methods [17, 19] and FISTA [20] regarding the computa-
tional costs. So far, none of the proposed algorithms was
applied to the multi-patch case except for Kaczmarz’s
method. The main drawback is the memory consump-
tion of the large multi-patch system matrix and, where
necessary, the computation of the normal matrix S T S .
It is not surprising that a fast and effective reconstruction
gets more important the larger the data sets get. An exem-
plary 3D single-patch system matrix with 20,000 rows cor-
responding to the selected frequencies and 303 = 27,000
columns corresponding to the voxels would grow to a
joint system matrix with 120,000 rows and about 135,000
columns for a setup with 6 patches with a slight overlap.
The huge system matrix has to be held in memory for
most algorithmic approaches, which is often unfeasible,
whereas Kaczmarz method is a row-action algorithm that
uses one row per inner iteration only. The above men-
tioned algorithms cannot challenge Kaczmarz method
in terms of runtime in a single patch setting and as their
costs depend on the size of the system matrix, they will
not be competitive in a joint multi-patch reconstruction
setting with a much larger system matrix.

We thus propose a joint reconstruction by the stochas-
tic primal-dual hybrid gradient (SPDHG) method allow-
ing for various different regularization terms. SPDHG is a
stochastic variant of the Chambolle-Pock algorithm, be-
longing to the class of primal-dual splitting approaches,
and has been proposed in 2018 [21]. It has been recently
adapted for MPI and thanks to system-matrix splitting
showed a similar reconstruction quality by the same run-
time as the Kaczmarz method [18]. Regarding memory
consumption, we denote that the system matrix can be
split row-wise into smaller parts as to reduce the size of
the matrix to hold in memory.

The aim of this work is twofold: for one thing, we show
that neighborhood respecting regularization terms sig-
nificantly improve the quality of reconstructed magnetic
particle images in a multi-patch setting. Moreover, we
demonstrate that the SPDHG algorithm can solve those
more sophisticated optimization problems fast enough
to be competitive to the current state-of-the-art multi-
patch MPI reconstruction method.
Note that this paper is an extension of the IWMPI 2022 ab-
stract [22], as such, some of the results have already been
published in that abstract and some parts of this work
are similar. However, there are important differences.
First, in this work we pay more attention to the details
of the considered optimization problems and algorithm.
Second, we have added an additional comparison to the
joint Kaczmarz method, which we study with a more
detailed analysis, and results from measurement data.

The remainder of this work is organized as follows: we
introduce different single patch and joint reconstruction
algorithms and state the corresponding optimization
problems in Section II. Following this, we outline the
data used for numerical experiments and start a detailed
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numerical comparison of the approaches in Section III.
We end with a conclusion and discuss future research
directions.

II. Methods

II.I. Reconstruction algorithms
Assume that the total FOV ΩSF covered by the system
matrices (SM) is divided into L patches ΩSF

l , l ∈ {1, ..., L}
with overlapping parts. We acquire one system matrix Sl

per patch, which is measured on that patch only instead
of the full FOV, reducing the memory requirements but
as a quid pro quo yielding convolution artifacts. The
measurements for patch l are stored in ul for l ∈ {1, ..., L},
such that the L imaging equations are given by

Sl cl = ul ∀l ∈ {1, ..., L} , (1)

where cl contains the concentration of the l -th patch.
Note that these equations are coupled through the over-
lap of the SM FOVs, i.e. ΩSF

l ∩Ω
SF
j 6=∅ for some l 6= j . The

reconstruction task can either be solved by a single patch
(SP) or by a joint (J) approach.

II.I.1. Single patch reconstruction

The SP approach is straightforward: each equation in (1)
is solved independently and the concentrations cl on
the different patches are then stacked together in a post-
processing step. Various weighting strategies are easily
conceivable and have been compared [5]. We use a fade-
in/fade-out approach, i.e. a linear weighting, as this re-
duces artifacts occurring at the patches boundaries and
overlapping parts. While it is advantageous that only one
SM needs to be held in memory during each reconstruc-
tion process, the stacked reconstructions typically suffer
from severe stripe and border artifacts. The intensity of
those artifacts can differ depending on the applied regu-
larization. For comparison purposes, we consider two
different SP reconstructions. The first one is obtained
by the state-of-the-art Kaczmarz method with Tikhonov
and iterative regularization (i.e. early stopping), using
an `2 data fitting term, solving

min
cl≥0

λ‖cl ‖2
2+

1

2
‖Sl cl −ul ‖2

2 ∀l ∈ {1, ..., L} . (2)

The second one is obtained by SPDHG method with non-
negative fused lasso (FL) regularization and `1 data fit-
ting, i.e. solving

min
cl≥0

αTV(cl )+β ‖cl ‖1+‖Sl cl −ul ‖1 ∀l ∈ {1, ..., L} . (3)

Although other data and regularization terms are easily
conceivable, we restrict ourselves to these two most pop-
ular SP approaches. It was proposed to use the SPDHG

method for MPI reconstruction recently as to allow for
various different regularization approaches such as FL,
classical Tikhonov or `1 regularization; and still have an
algorithm capable of online reconstruction [18]. More-
over, it was shown that the algorithm is highly compet-
itive to the Kaczmarz method. First, the quality of the
reconstructed images can be significantly improved by
using more suitable or more sophisticated regularization
functionals. Second, the computational effort of both
algorithms is still comparable when performing a single-
patch reconstruction. This is even more important, as
the systems we deal with in multi-patch reconstructions
are typically huge. Algorithms which cannot challenge
the run time of Kaczmarz method in the single patch case
will not be able to cope with the by far larger amount of
data in the multi-patch setting.

In the following, we describe the SPDHG algorithm
in more detail. The algorithm does not solve (3) directly,
but instead solves the equivalent saddle-point problem
given by

min
cl

max
y




Acl , y
�

−1{‖y1‖∞≤1}
�

y1

�

−



ul , y1

�

(4)

−1{‖y2‖∞≤α}
�

y2

�

+β ‖cl ‖1+1{cl≥0} (cl ) , (5)

where y =
�

y1, y2

�T
denotes the dual variable, A = (S ,∇)T

is the stacked linear operator and

1X (x ) =

�

0, x ∈ X
∞, else

,

denotes the indicator function of the set X . In imaging
applications, such a saddle point problem is often solved
by the Chambolle-Pock algorithm [23], which is compu-
tationally expensive for large datasets. The algorithm
updates the primal variable and the full dual variable
alternately by a proximal operator step. The stochastic
variant SPDHG updates only a random part of the dual
variable in each iteration and thus is computationally less
costly [21]. Instead of splitting the operator and dual vari-
able in two parts belonging to the data term, i.e. the MPI
forward operator, and the differential operator, respec-
tively, it is possible to apply additional row-wise splitting
to the MPI forward operator. The computationally most
expensive steps in the algorithm, matrix-vector multipli-
cations, are then performed on much smaller matrices
and thus less expensive. Pseudo code for the single patch
SPDHG algorithm can be derived from Algorithm 1 by
setting L = 1. Details regarding SPDHG implementation
and use for MPI reconstruction, e.g. the step size selec-
tion, the choice of data splitting, probability distribution
and others can be found in [18]. The algorithm is easy to
implement and use.

II.I.2. Joint reconstruction

To reduce artifacts near the patches’ boundaries we use
a joint reconstruction approach. We thus do not solve (1)
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independently for each patch, but we solve the (sparse)
stacked linear system







S̃1
...

S̃L






c =







u1
...

uL






, (6)

where the matrices S̃1, ..., S̃L work as S1, ...,SL on the part
of c , which contains the corresponding patch, and con-
tain zeros everywhere else, i.e. we assume appropriate
discrete grids Γ with index set I on ΩSF and Γl with index
set Il on ΩSF

l , such that there exist injective mappings
Φl : Il → I such that

S̃l = Sl ◦
�

δΦl (n ),m

�

n∈Il ,m∈I
, (7)

where δ denotes the Kronecker delta. Denoting Pl =
�

δΦl (n ),m

�

n∈Il ,m∈I
, we can thus rewrite (6) as





S1 ◦P1
...

SL ◦PL



 c =





u1
...

uL



 . (8)

The standard joint reconstruction approach applies
the Kaczmarz method to solve

min
c≥0

λ‖c ‖2
2+

1

2





((Sl ◦Pl ) c −ul )l=1,...,L







2

2
. (9)

Kaczmarz method operates row-wise and sweeps
through all rows in one iteration. Note that the compu-
tational effort can be significantly reduced by iterating
only over indices Φl (n ) for n ∈ Il instead of iterating over
n ∈ I .

In this paper, we propose to use SPDHG for multi-
patch reconstruction. This allows us to apply e.g. to-
tal variation regularization, which takes into account
neighborhood structures of the voxels across the patches’
boundaries. SPDHG can apply row-wise operator split-
ting and by splitting into S1 ◦P1, ...,SL ◦PL we can again
reduce the computational costs by iterating only over
indices Φl (n ) for n ∈ Il .

Moreover, we can apply additional splitting on the
data as proposed in [18] using

Sl =
�

Sl ,1, . . . ,Sl ,M

�T
, (10)

where the matrix is divided into M submatrices by row-
wise separation. We call the corresponding M measure-
ment subvectors data batches. Matrix-vector products
within the algorithm are then performed on the small ma-
trices Sl ,m . Our approach then solves the minimization
problem

min
c≥0

αTV(c ) +β ‖c ‖1+
L
∑

l=1

M
∑

m=1







�

Sl ,m ◦Pl

�

c −ul ,m







1
.

(11)
The resulting algorithm is stated in Algorithm 1.

Algorithm 1 SPDHG for multi-patch MPI reconstruction

1: input A = (S ,∇)T , c 0, y 0 =
�

y 0
1,1, ..., y 0

L ,M , y 0
TV

�

, ȳ 0, step
sizes τ,σ> 0, update probabilities p , parameters α,
β > 0

2: for k=0,1,2,...,K-1 do
3: Primal step:
4: c k+1 =proxτ(1{·≥0}(·)+β‖·‖1)

�

c k −τA∗y k
�

5: Dual step:
6: y k+1 = y k

7: choose data term or TV term update randomly
8: if data term update then
9: select patch l ∈ {1, ..., L} randomly

10: select batch m ∈ {1, ..., M } randomly
11: y k+1

l ,m =proxσ(1{‖·‖∞≤1}(·))
�

y k
l ,m +σ

�

Sl ,m ◦Pl

�

c k+1
�

12: else
13: y k+1

TV =proxσ(1{‖·‖∞≤α}(·))
�

y k
TV +σ∇c k+1

�

14: end if
15: Extrapolation step:
16: y k+1 = y k+1+p−1

�

y k+1− y k
�

17: end for

II.II. Data

Numerical experiments are first performed on simulated
data with simulated system matrices to be able to com-
pare the reconstructions to the ground truth phantom,
using measures as the structural similarity index (SSIM)
or peak-signal-to-noise-ratio (PSNR). We simulate 2D
data in the time domain using the Langevin magnetiza-
tion model and add Gaussian white noise according to
the noise model in [24].

The data are then Fourier transformed and processed
as measured data. The scanner is modeled based on the
real preclinical MPI system 25/20FF (Bruker BioSpin MRI
GmbH, Ettlingen, Germany) at University Medical Cen-
ter Hamburg-Eppendorf. The drive-field amplitudes are
12 mT in x - and y -direction and the gradient strength
is Gx = Gy = −0.5 T m−1. The drive field excitation fre-
quencies are fx = 2.5/102 MHz and fy = 2.5/96 MHz, the
repetition time for one Lissajous cycle is TR = 652.8 µs.
To exclude inverse crime, simulations are performed on
a ten times finer spatial grid than reconstruction. For
reconstruction purposes the voxel size is 2 mm×2 mm.
The SM FOV is of size 66 mm×66 mm, whereas the drive-
field (DF) FOV measures 48 mm×48 mm. We thus have
an overscan of 9 mm in each direction.

For the first phantom, we simulated with an SM FOV
overlap but without DF FOV overlap, i.e. the SM center is
shifted by 48 mm to obtain the different patches and the
phantom which consists of 2×3 patches measures 57×81
voxels. It is depicted in Figure 1 (A) and consists of large
homogeneous regions. The drive-field FOV (solid lines)
and overscan (dashed) for the upper left patch are indi-
cated in the figure. Further experiments are performed
on a sparser phantom, depicted in Figure 1 (B), which is
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Figure 1: The ellipse phantom (A) and the sparsity phantom
(B). For the upper left patch, the DF FOVs are indicated by solid
lines and the SM FOVs by dashed lines. DF FOVs for the other
patches are indicated by dotted lines for the sparsity phantom.

based on the phantom used in [25]. Following the set-up
in [25], the SM centers are shifted by 32 mm resulting in
a DF overlap of 16 mm. The full reconstruction grid thus
consists of 2×2 patches and measures 49×49 voxels.

To demonstrate the appropriateness of our approach
for real data, we use data recorded with the preclin-
ical Bruker MPI system at University Medical Center
Hamburg-Eppendorf. The drive-field amplitudes are
12 mT in x - and y -direction with a gradient strength
of−1 Tm−1 in x - and y -direction. The setting consists of
1×2 patches, covering a total SM FOV of 40 mm×64 mm
with each SM covering 40 mm×40 mm comprising an
overscan of 8 mm in each direction. The phantom con-
sists of a bar, which is placed diagonally over the patch
intersection. For further details, we refer to [26].

III. Results
We start our experiments by comparing the quality of
the reconstructed images for the ellipse phantom. Each
algorithm has two parameters to tune (namely α and
β for SPDHG and λ and the number of iterations K for
Kaczmarz method) and we ran detailed parameter tests.

The best possible SSIM and PSNR values obtained
are listed in Table 1. The visually most convincing re-
constructions are depicted in Figure 2 and we state the
corresponding parameter values.

Single-patch reconstructions lead to boundary arti-
facts especially visible within the large ellipse. As ex-
pected by the choice of regularization, the FL regularized
SP reconstructions suffer from less artifacts. However,
there are stripe artifacts left. The joint Kaczmarz recon-
struction is not able to handle the boundary artifacts due
to Tikhonov regularization. Note that the SP Kaczmarz re-
constructions have less artifacts and higher SSIM/ PSNR
values compared to the joint ones, however, this is due
to the smoothing applied by the linear weighting we use
to stack the patches. Although this enhances the quality
for this specific phantom, it might lead to inferior quality
for others. As indicated by the SSIM values, we observe
more noise overall in the Kaczmarz reconstructions. The
joint SPDHG algorithm outperforms all other reconstruc-

SSIM: 0.47, PSNR: 28.39 SSIM: 0.92, PSNR: 36.59

SSIM: 0.38, PSNR: 26.80 SSIM: 0.99, PSNR: 40.77

λ = 0.10, K = 5 α = 0.56, β = 0.18

λ = 1.78, K = 1 α = 0.56, β = 1.00

Kaczmarz SPDHG

S
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P
a
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J
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Figure 2: Reconstructed images of the ellipse phantom. Note
that the artifacts in the SP Kaczmarz reconstruction are less
pronounced than in the joint Kaczmarz reconstruction due to
the smoothing applied by the linear weighting we use to stack
the patches in the SP case and the very small iteration number
in the joint case.

SSIM: 0.59, PSNR: 29.48 SSIM: 0.89, PSNR: 24.30

SSIM: 0.35, PSNR: 27.18 SSIM: 0.99, PSNR: 28.99

λ = 0.18, K = 2 α = 1.00, β = 1.00

λ = 3.15, K = 1 α = 1.78, β = 5.60
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Figure 3: Reconstructed images of the sparsity phantom.

tion approaches in terms of quality. It reaches the highest
SSIM and PSNR values and leaves no artifacts and almost
no noise in the reconstructed images.

To underline the qualitative enhancement of the re-
constructed images, we also compare reconstructions
of the sparsity phantom. In this case, we do not expect
as much influence of the TV penalty but again we ob-
serve a significantly reduced noise level in our recon-
structions by SPDHG due to the l 1-penalty term (cf. Fig-
ure 3). Again, the best obtained PSNR and SSIM values
for the different reconstruction approaches are stated
in Table 1 and the corresponding parameter values are
stated in the figure. The proposed algorithm again out-
performs the Kaczmarz method in terms of both, SSIM
and PSNR value.
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Table 1: Maximum SSIM and PSNR values for different reconstruction approaches for the ellipse and the sparsity phantom.

SP/J Algorithm Ellipse phantom Sparsity phantom
max. SSIM max. PSNR max. SSIM max. PSNR

SP Kaczmarz 0.78 28.39 0.85 29.48
SP SPDHG 0.92 36.59 0.95 24.30
J Kaczmarz 0.61 26.80 0.52 27.18
J SPDHG 0.99 40.77 0.99 30.75

0 0.5 1 1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

Epochs

S
S
IM
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e

SP, 1 batch SP, 3 batches SP, 5 batches

J, 1 batch J, 3 batches J, 5 batches

J Kaczmarz reference

Figure 4: The SSIM value of reconstructed images of the ellipse
phantom against the run time in joint Kaczmarz epochs for
different amounts of additional data splitting for single patch
and joint SPDHG. The SSIM values reached by joint Kaczmarz
is indicated as a reference value.

We now compare the run times of the different al-
gorithms. As one epoch, we define the time it takes to
run one iteration of the joint Kaczmarz algorithm. When
using SPDHG, we study the influence of additional data
splitting as in (10) on the run time and the quality of
the reconstructed images. For these experiments, we
use the six patches ellipse phantom. Note that our stan-
dard setting for the joint approach is the use of six data
batches corresponding to the six patches and explicitly
mentioned splitting means on top of that. We compare
the SSIM values reached after a fixed number of epochs
for single-patch approach and joint approach using the
example of the ellipse phantom reconstruction in Fig-
ure 4. Both, SP and joint SPDHG surpass the maximum
SSIM value reached by joint Kaczmarz almost immedi-
ately. SP Kaczmarz reaches a higher SSIM value than
joint Kaczmarz (i.e. 0.78 compared to 0.61), but this is
reached mostly due to the smoothing by our stacking
approach. Still, also the maximum SSIM value obtained
by SP Kaczmarz is surpassed by all SPDHG approaches
after approximately half an epoch. After less than one
epoch, all joint SPDHG algorithms reach a higher SSIM

λ = 100, K = 10 α = 101, λ = 101

λ = 102, K = 10 α = 101, λ = 101

Kaczmarz SPDHG
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Figure 5: Reconstructed images of measured data of the 2-
patch bar phantom.

value than SP SPDHG does at maximum. We further note
that additional data splitting has limited influence in the
multi-patch setting. Three data batches are sufficient to
reach the maximum image quality after approximately
one epoch, such that early stopping could be applied at
that point. However, we expect that even higher influ-
ence of data splitting might be possible as we suspect the
limited influence might be caused by the implementa-
tion of the algorithms, which need the more frequent stor-
age accesses to suboptimal data types the more splitting
is applied. Moreover, please note that all algorithms are
not implemented in parallel although SPDHG is highly
parallelizable.

With the help of simulated data, we were able to sur-
vey the results of the proposed method by comparison
to a ground truth. We underline the promising findings
by reconstruction of measured data in order to show the
applicability of the method. The reconstructed images
for the different approaches can be seen in Figure 5. Note
that we used TV and `2 regularization for the SPDHG re-
constructions instead of FL regularization as that seems
to better fit the data and additionally underlines the flex-
ibility of the scheme. As we have seen for simulated data,
the Kaczmarz reconstructions suffer from more noise
artifacts than the SPDHG ones. Moreover, the images re-
constructed by the SP approaches face severe boundary
artifacts with more severe artifacts in the SPDHG recon-
structed image. The joint approaches significantly re-
duce those artifacts with joint SPDHG achieving the most
homogeneous concentration within the patch boundary
region.
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IV. Discussion
The quality of reconstructed multi-patch MPI images
can be significantly improved by choosing an appropri-
ate regularization term and a suitable norm for the data
fitting term. Our experiments underline the benefits
of regularizations, which take into account neighbor-
hood structures within the images and especially across
patches’ boundaries. Reconstructions obtained by using
TV regularization outperform the current state-of-the art
reconstructions in terms of SSIM and PSNR value as well
as by visual inspection.

Our numerical experiments show that the SPDHG
algorithm allows for such regularization terms while pre-
serving a short run time. The exemplary SPDHG algo-
rithm for FL regularization is competitive to joint Kacz-
marz concerning the run time and effort for parameter
tuning. In summary, the SPDHG algorithm comes with
similar computational costs compared to the Kaczmarz
method but provides the opportunity to significantly im-
prove the quality of the reconstructed images.

We expect even better performance when imple-
mented with appropriate data structures and in paral-
lel. The short run time allows for reconstruction of 40
patches and more within decent time, which makes the
approach relevant for application in practice. Moreover,
there are potential savings in calibration time and mem-
ory consumption by the neighborhood respecting regu-
larization.
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