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Abstract
A novel method for magnetic particle optical imaging that exploits the change in transmitted light intensity of
magnetic nanoparticles in the presence of a magnetic field allows for high resolution and sensitive imaging of
magnetic nanoparticles. Since the method uses direct optical imaging, the theoretical resolution is no longer
governed by the properties of the material, but depends on the optical diffraction limit. In future work, it is expected
that high-resolution magnetic nanoparticle imaging in vivo will be achieved by selecting wavelengths of light that
have a high penetration capacity into biological tissue.

I. Introduction

Magnetic particle imaging (MPI) using magnetic
nanoparticles as tracers was introduced in Nature in
2005 and the first device was developed to demonstrate
its feasibility [1]. MPI can effectively improve contrast
and enable 3D functional imaging of a wide range of
tissues, including vascular perfusion imaging, tumour
imaging and targeted drug monitoring [2–4]. However,
the imaging resolution of MPI is always dependent on
the magnetic nanoparticles, and particles with narrower
full width at half maximum intensity (FWHM) of the
magnetisation conductivity can effectively improve the
resolution of imaging. In addition, the particles are
accompanied by relaxation effects which are detrimental
to the imaging resolution. The resolution of optical
imaging is generally close to the diffraction limit and can
be further improved to tens of nm by super-resolution
imaging techniques [5]. Therefore, if optical imaging is
used to image magnetic nanoparticles specifically, not

only can high contrast be maintained, but the resolution
of the imaging will no longer be constrained by the
nature of the material.

We proposed a novel magneto-optical imaging
method for magnetic nanoparticle by exploiting its
unique superparamagnetic properties as well as the op-
tical properties. And its imaging capability has been
validated in vitro experiments, and further work is in
progress.

II. Methods and materials

Magnetic nanoparticle is approximately a few tens of
nanometres in diameter and therefore undergo Rayleigh
scattering when exposed to monochromatic light. Fur-
thermore, due to their superparamagnetic properties,
magnetic nanoparticles in the colloidal state are in ther-
mal equilibrium and well dispersed in the absence of
a magnetic field [6]. Under the influence of an applied
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Figure 1: Schematic diagram of the magneto-optical imaging
device for magnetic nanoparticles.

magnetic field, these particles can quickly aggregate and
orient themselves into magnetic chains, which greatly
reduces the scattering effect and thus improves the pen-
etration of light [7, 8]. By controlling the magnetic field,
the intensity of the transmitted light can be varied, and
the magnetic nanoparticles can be detected by varying
the intensity of the transmitted light before and after the
magnetic field.

The schematic diagram of the experimental setup is
shown in Fig. 1. Experiments were carried out using
diluted 10 µg/mL of water-based iron oxide magnetic
nanoparticles MHP-50 (Ocean NanoTech) as magneto-
optical markers, with a laser generating monochromatic
light through the sample after extended beam collima-
tion and finally image acquisition using a camera. The
effective resolution depends on the image element size of
the complementary metal oxide semiconductor (COMS)
chip when the target is magnified without the use of a
lens set, so that a resolution of at least 10 µm can be
achieved with this method.

It is assumed that the transmitted light intensity is I0

before the magnetic field is applied and the transmitted
light intensity is IB after the magnetic field is applied.
The noise generated using the COMS is IN o i s e , which
mainly includes plot noise, dark current noise, and read-
out noise. The difference in light intensity before and
after the application of a magnetic field by a magnetic
nanoparticle can be expressed as the signal of a magnetic
nanoparticle SM N P , is given by:

SM N P = IB − I0− IN o i s e (1)

III. Results and discussion

The transmitted light intensity is enhanced by the mag-
netic field and is restored after the field is removed.
Throughout the process the background does not change
with the magnetic field and therefore there is a strong
contrast. The results are shown in Fig. 2, where the mag-
netic nanoparticle reagent and a 30 µm copper wire are
multiplied in a 10 mm wide cuvette as can be clearly
seen in the original image I0.The brighter parts of im-
age IB − I0 are the light from the magnetic nanoparticles,
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Figure 2: Results of optical imaging of magnetic nanoparticles
in vitro.

while the darker parts are the colorimetric tube and the
surrounding background. It is important that the 30 µm
copper wire can still be clearly distinguished, which indi-
cates that the imaging resolution is at least below 30 µm.
Comparing the images IN o i s e with SM N P , the magnetic
nanoparticles can be specifically detected with a signal
to background ratio (SBR) of approximately 18.3 dB.

Different materials transmit different light intensities
due to different transmittances, so both the magnetic
nanoparticles and surroundings can be observed by im-
age I0; while specific imaging of the magnetic nanoparti-
cles can be achieved before and after the application of
a magnetic field, with high contrast.

The ability to detect light penetration into the hu-
man body is fundamental to achieving optical imaging
of magnetic nanoparticles, and human tissue has good
transmission near the near-infrared band of 700-1000
nm, which can act as an optical window [9]. The tempo-
ral resolution of this imaging method is one frame per
second, and the available references confirm that opti-
cal imaging of biological tissues can be achieved in the
NIR window from µm to mm depth [10, 11]. Thus rapid
imaging of magnetic nanoparticles using optical means
becomes possible within a certain thickness.

IV. Conclusion

The magnetic particle optical imaging technique pro-
posed in this paper can effectively improve the resolu-
tion compared to conventional magnetic nanoparticle
imaging techniques, and high contrast detection of mag-
netic nanoparticles in vitro has already been achieved
using this method. Future work is expected to enable
imaging of magnetic nanoparticles in vivo by selecting
the right wavelength of light.
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