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Abstract
In iterative system-matrix-based reconstruction in Magnetic Particle Imaging, three major parameters control
the amount of regularization. Finding the right choice for these parameters is commonly done by user input and
requires time and experience. We propose a method that enables automatic reconstruction and achieves good
results on a measured concentration series.

I. Introduction

The imaging equation in Magnetic Particle Imaging (MPI)
describing the connection between particle distribution
and voltage signal poses an inverse problem in the fre-
quency domain based on a measured system matrix [1,
2]. Considering a regularized least squares approach,
this is commonly solved using iterative solvers, e.g. the
regularized Kaczmarz method [3]. The quality of the re-
constructed image mainly depends on three parameters:
the weighting of the regularization term, the frequency
selection of the voltage signal and the number of total
iterations [4]. Having a clear measurement with high
signal-to-noise ratio (SNR) over all frequency compo-
nents, good results can be achieved with weak regular-
ization and by considering the vast majority of frequency
components. For a noisy measurement the regulariza-
tion needs to be stronger and frequencies with a bad
SNR need to be excluded from the reconstruction pro-
cess. Thus, the reconstruction parameters depend not
only on the measurement settings but also on the shape
of the phantom and the iron concentration. Finding an
ideal choice of the parameters for each measurement
remains a major challenge in MPI reconstruction. Algo-
rithms for finding a good regularization strength [5], as
well as a good SNR-threshold [6] have been proposed,
but the state of the art procedure is up to now trial and

error supported by experience. In this work, we present
a method, that enables automatic reconstruction with-
out user input by adapting the SNR threshold and regu-
larization parameter in each iteration of the solver and
defining a proper stopping criterion. The method is val-
idated on the dot-phantom of the MPI concentration
study published in [4].

II. Methods and materials

The discrete MPI imaging equation in matrix-vector form
is given by

u meas = S c , (1)

where c ∈ RN
+ is the particle concentration vector,

S ∈ CK ×N is the system matrix and u meas = u + η
with u ,η ∈CK is the measured voltage vector with ad-
ditive background noise. N , K ∈N are the total number
of sampling positions and Fourier coefficients, respec-
tively. Solving (1) for the particle concentration vector
is commonly done by applying an iterative solver to the
Tikhonov regularized least squares problem

c λ = argmin
c∈RN

+

‖S c −u meas‖2
2 + λ ‖c ‖

2
2 , (2)
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with the parameterλ ∈R+ controlling the amount of reg-
ularization. Bigger values for λ lead to a stronger regular-
ization. As described in [4], noise amplification is further
regulated by removing frequencies with low SNR values
from the linear system. To this end, an SNR-threshold
Θ ∈R+ is introduced, such that only frequency compo-
nents with SNRk >Θ for k ∈ {1, ..., K } are considered for
reconstruction. A higher threshold Θ leads to stronger
regularization. Note that because of the distribution of
high-SNR frequencies around higher harmonics of the
MPI-scanners excitation frequency [7] the connection
between Θ and the number of rows in the linear system
is not linear. The third control of regularization is the
number of iterations ι ∈N for iterative solvers. A lower
number of iterations is equivalent to a stronger regular-
ization. Altogether, we collect the three reconstruction
parameters in a set

P := (λ,Θ, ι) . (3)

To achieve an automated reconstruction, the goal is to
condense the parameter-tripletP into a single param-
eter. To this end, we map the regularization strength λ
and the SNR threshold Θ to ι, such that each iteration
has different but predefined values for λ and Θ. The idea
is, that the first iterations work only on few frequencies
with a strong regularization (high Θ and λ) and later it-
erations include more frequencies with a dwindling reg-
ularization term (low Θ and λ) for a better resolution.
In between should be a steady and smooth transition
with polynomial decrease, which can be described by
functions of the form

h j (x ) =
α j

1 + (β j x − β j )γ j
, (4)

for 1 ≤ x ∈ R, α j ,β j ,γ j ∈ R+. The index j ∈ {Θ,λ} as-
sociates h to the respective regularization parameter. A
further regulation is a minimum value Θmin ≥ 1, prevent-
ing the inclusion of pure noise frequencies. The values
of αΘ and Θmin are dependent on the receive path of an
MPI scanner and thus have to be adjusted for different
receive coils.
The second step is to find a suitable stopping criterion
for the iterative solver. When using the regularized Kacz-
marz method, the auxiliary vector converges to the scaled
residual −λ− 1

2 (S c −u meas). This can be exploited to cal-
culate the L-curve between the 2-norms of the residuum
and c . However, typical L-curve stopping criteria based
on the curvature of the L-curve [5] do not take into ac-
count the change in system size and regularization in
each iteration. Thus, it is important to normalize the
residual-norm with respect to the amount of considered
frequencies in each iteration. To further stabilize the cri-
terion it is meaningful that the curvature Ψ ∈R should
exceed a certain level dependent on the size of the so-
lution norm, giving the final stop criterion at iteration

Table 1: Error-Results

conc. hands-free hands-on

(mmol/l) NRMSD iter. NRMSD P
400 1.48e-2 20 1.12e-2 (2e-4,1.6,14)

200 1.5e-2 18 1.03e-2 (2e-3,1.3,26)

100 1.67e-2 16 1.06e-2 (3e-3,1.4,26)

50 1.88e-2 14 1.11e-2 (5e-3,1.7,26)

25 2.63e-2 10 1.48e-2 (0.01,1.8,22)

12.5 2.99e-2 9 1.70e-2 (0.04,2.7,10)

6.25 3.92e-2 7 2.04e-2 (0.06,3,1)

3.13 5.37e-2 3 2.39e-2 (0.09,4,1)

1.56 5.59e-2 4 3.93e-2 (0.2,10,1)

0.78 6.84e-2 2 5.84e-2 (0.6,30,1)

0.39 9.42e-2 2 0.110 (1,30,1)

0.2 0.118 2 0.146 (5.5,70,1)

i ∈N by

Ψi

‖c 1‖2
> δ ∧

Ψi

Ψi−1
> ε, (5)

for δ,ε ∈R+.

III. Experiments
We evaluated the described method on the concen-
tration study with a single-dot phantom described in
[4], measured with the preclinical MPI system 25/20FF
(Bruker Corporation, Ettlingen, Germany). It consists
of a series of 12 measurements where the iron concen-
tration is halved for each new measurement starting
with κ1 = 400 mmol/l. The parameters for the map-
ping functions and the stop criterion were chosen as
αλ = 5,βλ = 0.2,γλ = 5,αΘ = 60,βΘ = 0.28,γΘ = 2,Θmin =
1.3,δ= 1

4 ,ε = 2. We use normalized values forλ using the
nuclear norm of the system matrix. For an error-analysis
we voxelized a ground-truth out of the CAD files of the dot
phantom and use the normalized root mean square de-
viation (NRMSD) between the calculated concentration
vectors and the ground-truth phantom. Furthermore,
we carefully chose reconstruction parameters by hand
to establish a reference reconstruction.

IV. Results
The number of iterations to satisfy the stopping crite-
rion is given for each concentration in Table 1. Further-
more the optimal parameter set resulting from the hand-
tuned reconstruction as well as the NRMSD values are
reported. The corresponding reconstruction results are
plotted in Fig. 1, using a maximum intensity projection
in z -direction (xy -plane). It can be seen, that the hands-
free reconstruction is able to adapt ι and thus the amount
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Figure 1: Reconstruction results for the hands-free method (top) and the optimal parameter set resulting from the grid search
(bottom) for each concentration (κ1 = 400 mmol/l). Shown is the xy -plane with a maximum intensity projection in z -direction.

of regularization over the different concentrations. Good
results – both visually and with respect to the NRMSD –
can be achieved over all concentrations. For the lowest
two concentrations the results are even better than the
best reconstruction result using hand-tuned parameters.

V. Discussion

The proposed method is able to find a reasonable com-
promise between resolution and noise and gives good re-
constructions for MPI measurements with a broad band
of iron concentrations. The results are not significantly
worse than the reconstruction results using the optimal
parameter set arising from an expensive tuning process
by hand. For the lowest two concentrations, the hands-
free reconstruction even gives a better NRMSD. The rea-
son could be, that the changing of the reconstruction
parameters between the first and second iteration gives a
higher flexibility for such low concentrations. Altogether,
this enables good ’plug and play’ reconstructions with-
out experience and prior knowledge on the data. Other

potential use-cases are measurements with a time de-
pendent concentration, e.g. in vivo bolus measurements.
To underline the power of the presented hands-free re-
construction, the method needs to be verified on various
MPI data in future work. Another important step for
future work on this topic is the derivation of the scanner-
dependent tuning parameters αΘ and Θmin directly from
the measurement data.

VI. Conclusion
In this work we presented a method that is able to achieve
good reconstruction results on MPI data with a very
broad band of iron concentrations without any user in-
put. This enables good ’plug and play’ reconstruction
results independent of the noise level and the iron con-
centration.
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