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Abstract

Magnetic particle imaging (MPI) is a new medical modality to safely image the concentration distribution of
superparamagnetic iron-oxide nanoparticles (SPIOs). It relies on the nonlinear magnetization response of SPIOs
under a time-varying magnetic field to induce an output voltage signal. When the magnetic field is multidimensional,
the accuracy of the first-order Debye model decreases in describing the magnetization process. To solve this problem,
we propose a multi-dimensional Debye model, which considers each dimensional magnetic field’s contribution
to the magnetization of SPIOs. Through various experiments, the proposed multi-dimensional Debye model
shows superiority over the first-order Debye model, with a 30% lower root-mean-square error in modeling the
magnetization. The multi-dimensional Debye model can accurately analyze the influence of different magnetic
fields on the SPIOs. This model can further guide MPI instrument optimization.

. Introduction tion process as an exponential decay with a relaxation
time constant, 7 [4]. However, a single relaxation time

cannot sufficiently describe the dynamic magnetization

Magnetic particle imaging (MPI) is a promising modality
that has been applied in various medical applications
[1], such as cardiovascular imaging [2]. Accurately mod-
eling the magnetization behavior of SPIOs is essential
for MPI signal analysis and instrument improvement.
Compared with the current models for MPI [1, 3], the
first-order Debye model is the most concise for describ-
ing the magnetization relaxation effect of the SPIOs [4].
The first-order Debye model simplified the magnetiza-
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under multidimensional magnetic fields [3]. This prob-
lem would cause MPI theory analysis inaccuracy and
leads to image artifacts in the reconstruction process.
Thus, it is necessary to establish an accurate magnetiza-
tion model for multidimensional MPI.

In this study, a multi-dimensional Debye model is

developed to describe the magnetization of SPIOs un-
der multidimensional magnetic fields in MPI. The ex-
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ponential decay is a superposition of several first-order
Debye terms. Each term owes one relaxation time con-
stant, which reflects the relaxation behavior caused by
a one-dimensional magnetic field. To further evaluate
the contribution of a specific magnetic field component,
the magnetic field strength coefficient is added to each
first-order Debye term. Furthermore, the accuracy of the
multi-dimensional Debye model is validated by compar-
ing it with actual magnetization measurement data. Its
robustness is also validated through various frequency
and amplitude experiments.

II. Theory and methodology

The signal-generating process of the MPI theory is pre-
sented here. In a multidimensional MPI, the gradient
field is in the form. H(x)= Gx, where G is the gradient
matrix, and x = [x y z]” denotes the position in real
space [5]. The time-varying excitation magnetic fields
are H (1) =[H,(¢) H,(t) H,(1)]". The total effective mag-
netic field can be described as H(t,x)=H ,(t)—Gx.

The magnetization of SPIOs M in response to the
applied magnetic field can be described as the first-order
Debye model [4]:

M, =mp(x)Z (BH)xr(t), 1)

with
r(e)=(1/t)exp(—t/7)u(t), )

where  := {27, kp is the Boltzmann constant, m[A-m?]
is the magnetic moment of the SPIOs, T is the particle
temperature, Z(-) is the Langevin function [1], 7 is the
relaxation time constant, p(x) denotes the concentration
distribution of the SPIOs, u(t) is the Heaviside function
[4].

To compensate for the limitation of the first-order
Debye model under multidimensional magnetic fields,
the multi-dimensional Debye model is adopted. The
multi-dimensional Debye model inherits the time do-
main convolution form:

M, ora=mpx)¥ (BH)x*h(t), 3

with

W= u()y L O/exp-t/7), @
i=1

where H; is the amplitude of the i-th dimensional mag-
netic field component, 7, is the relaxation time constant
caused by the i-th magnetic field component, n(< 3) is
the number of magnetic field components in different di-
rections, and || H|| is the total effective magnetic field am-
plitude. This superposition form of multi-dimensional
Debye model has been used in the study of magnetic
permeability [6].
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Via the reciprocity theorem, the induced voltage is
given by

d

s(t)=— f BM,_,.x,t)dx,

at ©)

where B; denotes the receive coil sensitivity [5].

For the parameter selection in the multi-dimensional
Debye model, the first dimensional relaxation time con-
stant 7, keeps consistent with that of the first-order De-
bye model. This parameter is estimated by the data fit-
ting algorithm in [4]. When 7 =1, the multi-dimensional
Debye model becomes the first-order Debye model. As a
multi-dimensional field is added, the corresponding re-
laxation time constant is calculated through a nonlinear
least-squares optimization method.

I1l. Experiments

To evaluate the performance of the multi-dimensional
Debye model, the simulated magnetization curves were
compared with the measurement data obtained by two-
dimensional magnetic particle spectrometry (MPS). The
calibrated voltage signal is integrated over time to ob-
tain the magnetization. The robustness of the multi-
dimensional Debye model was also tested under various
test conditions, such as excitation frequencies and am-
plitudes.

For a quantitative analysis of the proposed model
performance, the root-mean-square error (RMSE) was
applied to calculate the error between the simulated data
and the measurement data [7]:

RMSE = d Zi‘il(Mreal(i)_Mmodel(i))Z
N

where M, ., is the magnetization measured by the MPS,
N is the number of data, and M,,,,,.; is the magnetiza-
tion simulated by the model.

A commercial magnetic nanoparticle, Synomag (Mi-
cromod GmbH, Germany), coated with dextran (surface:
NH2), was used for testing. The iron concentration is
0.5mg/ml, and the hydrodynamic diameter is 70nm. A
volume of 100 u! sample was utilized.

Two groups of experiments were conducted to val-
idate the multi-dimensional Debye model and test its
robustness:

Group 1: The x-direction excitation magnetic field
was set at 10 kHz, 10 mTy;,"'. The frequency of the y-
direction excitation magnetic field was set to 20 Hz, and
the amplitudes were set to 0, 3, 5, 8 mTy; ", respectively.
The receive coil is located in the x-direction.

Group 2: The x-direction excitation magnetic field
was set at 10 kHz, 10 mTy;,". The frequency of the y-
direction excitation magnetic field was set at 1 kHz, and
the amplitudes were set to 0, 1, 3 mT,ual, respectively.
The receive coil is located in the x-direction.

y (6)
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Figure 1: Magnetization curves of the multi-dimensional De-
bye validation experiments. The first row is MPS measurement
data: (a) Group 1 (y-direction 20 Hz); (b) Group 2 (y-direction
1 kHz); The second row is simulated data by first-order Debye
and multi-dimensional Debye models: (c) Group 1 (y-direction
20 Hz 3 mTuy") ; (d) Group 2 (y-direction 1 kHz 3 mTu;?).

Table 1: The RMSE of experiments results

unit: mTy," 0 3 5 8
Group 1 first-order 0.14 0.17 0.19 0.19
multi-dimensional | 0.14 0.13 0.12 0.12
unit: mTy,’ 0 1 3
Group 2 first-order 0.14 0.18 0.18
multi-dimensional | 0.14 0.13 0.12

IV. Results

The results of the experiments demonstrated the ac-
curacy and broad applicability of the proposed multi—
dimensional Debye model. Figure 1 shows the magne-
tization curves measured by the MPS instrument and
calculated by the two models. With increasing the ampli-
tude of the y-direction magnetic field, the magnetization
curve of the SPIOs rises at the maximum points, as shown
in Figure 1(a) and (b). In Figure 1(c) and (d), the multi-
dimensional Debye model fits well with the MPS mea-
surements in the presence of multidimensional magnetic
fields. However, the first-order Debye model ignored the
influence of the second-dimensional (y-direction) mag-
netic field, leading to inaccurate results.

The RMSE of these experiments is listed in Table 1.
The average improvement of the multi-dimensional De-
bye model to the first-order one is 30.7%.

Two relaxation time constants of the multi-
dimensional Debye model are 8.2 us, 7.3 us for Group 1,
and 8.2 us, 0.1 us for Group 2. The single relaxation time
constants of the first-order Debye model are 8.2 us for
both groups of experiments.

10.18416/ijmpi.2023.2303009

V. Discussion

The proposed multi-dimensional Debye theory can be
applied to multidimensional excitation. In this work,
two-dimensional excitation MPS experiments prelimi-
narily verified the model’s accuracy. Our research team is
also developing three-dimensional excitation MPS. The
model’s performance under three-dimensional excita-
tion will be tested in future research.

Compared to the first-order Debye model, the multi-
dimensional Debye model considers the relaxation effect
caused by each dimensional magnetic field. The multi—
dimensional Debye model better agrees with the mea-
surement data through more relaxation time constants.
This model can be used for the optimization of excitation
trajectory [8].

V1. Conclusion

In this study, we proposed an accurate and robust
multi-dimensional Debye model to describe nanopar-
ticle magnetization under multidimensional magnetic
fields in MPI. The multi-dimensional Debye model con-
siders the influence of each dimensional magnetic field
component on the magnetization process. The multi—
dimensional Debye model performs better through the
experiments than the first-order Debye model. The
multi-dimensional Debye model also has the potential
to be extended to MPI instrument optimization.
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