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Abstract

The acquisition views of projection magnetic particle imaging (MPI) limit the temporal resolution of tomographic
imaging. When the views of projection are insufficient (sparse view), the streaking artifacts will be introduced after
filtered back-projection. The current solutions to the sparse view problem in computed tomography can be divided
into three categories, iterative reconstruction, image post-processing, and sparse view sinogram restoration. The
first one is computationally intensive and the parameters are difficult to determine. The latter two are data-driven
deep learning methods that require large-scale trainable datasets. However, with the data scarcity limitation of MPI,
the complex features of the image domain will make the network easy to overfit. Therefore, we propose a sparse
view sinogram restoration network for MPI to improve the temporal resolution of tomography. We validate the
effectiveness of the proposed method on a simulated dataset and outperform iterative reconstruction and image
post-processing methods.

|. Introduction ber of projection acquisitions and has been extensively
studied in CT. The current mainstream methods can be
divided into three categories: (1) iterative reconstruc-
tion methods [5], (2) image post-processing methods
[6], and (3) sparse view sinogram restoration methods

[7]. The iterative reconstruction method has the limi-

With its advantages in sensitivity and temporal resolu-
tion, MPI has made great progress in biomedical appli-
cations, such as, nerve density visualization [1], plaques

detection [2], and stem cell monitoring [3].

Currently, the scanning modes of MPI are mainly di-
vided into two categories, field free point and field free
line, the latter has higher sensitivity and temporal resolu-
tion [4]. However, tomographic reconstruction using FFL
scans requires a full and dense view of 2D projections,
which also limits its temporal resolution. Therefore, the
concept of sparse view reconstruction can be introduced,
which improves imaging resolution by reducing the num-
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tations of large amount of calculation and difficult to
determine parameters. The latter two are data-driven
deep learning methods that require large amounts of
training data. For image post-processing methods, since
the features of the image domain are more complex, the
risk of network overfitting will be increased, and the post-
processing method cannot perfectly remove streaking
artifacts. Therefore, we propose a sinogram restoration
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Sparse view sinogram restoration network
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Figure 1: Structure of sparse view sinogram restoration net-
work. Since the sparse sinogram network contains four down-
sampling modules, we resize the original image to 240 x 240
(realized through bilinear interpolation in OpenCV).

network to deal with the issue of sparse view reconstruc-
tion in projection MPI.

Il. Material and methods

A large amount of data is often required to train deep
neural networks, however, the cost of obtaining large-
scale real MPI data is enormous. A common practice is
to generate MPI simulation datasets to train deep neu-
ral networks. Therefore, we also adopt this strategy, we
simulate the scanning modes of projection MPI, and sim-
ulate 2400 tomographic slices, of which 2000 are used for
training and 400 are used for validation. For each slice,
we perform dense view (acquisition range m, acquisition
interval 5 °) and sparse view (acquisition range T, acquisi-
tion interval 20°) projection to obtain the corresponding
sinograms.

The sparse view sinogram recovery network adopts
the structure of UNet [8] (showed in Fig. 1), which includ-
ing four down sampling (including two convolutional
and a pooling layers) and up sampling blocks (including
two convolutional and a up sampling layers). The input
and ground truth (GT) of the network correspond to the
resized sparse view sinogram (S°”) and the dense view
sinogram (S%7). The loss function used in network train-
ing consists of two parts, L, loss and structural similarity
(SSIM) loss Lgg;,,- The L, loss is used to calculate the
pixel distance between the sinogram restoration results
of network (S7¢°7°"¢) and GT, and can be defined as:

n_.m 2
_ restore __ qdv
L= > (s =)
i

where the m and n represent the height and width of the
image, respectively. And the Lg;,, canbe defined as:

2)

1)

Lygim=1—SSIM(S"¢store —gavy
Therefore, the final loss can be expressed as:

Lall=L2+.uLssim : ®)
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Figure 2: Results of sparse view sinogram restoration.
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since the scales of the L, and L,,;,, are different, L, is
much larger than L, ,,, where L, controls the pixel-level
distance, and L;,, controls the overall structural sim-
ilarity of the image. Through the adjustment of hyper-
parameters y, the network can learn the characteristics
of sinogram in pixel details and overall structure. The
hyperparameters u are determined by selecting the op-
timal parameters in the internal validation set by grid
search.

The SSIM, peak signal to noise ratio (PSNR), and
mean square error are used to evaluate the performance
of sparse view sinogram restoration.

I1l. Results and discussion

I11.1. Results of sparse view sinogram
restoration

The quality of sparse view sinogram restoration directly
affects the results of tomographic reconstruction, and
we first evaluate the sparse view sinogram restoration
results of the network. The results of sinogram recovery
are shown in Fig 2.

There exists quite difference on the features of the
simulated imaging targets in the image domain, however,
the feature distributions in the projection domain are
similar, which is also more conducive to the learning
of the network. Therefore, the restoration results of the
sparse view sinogram are very close to the dense view
sinogram.

The quantitative results are presented in Table 1. The
SSIM of the sinogram restoration results is greater than
0.95 and the PSNR is greater than 35, which further illus-
trates the good performance of the sparse view sinogram
restoration network.
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Figure 3: Results of tomography reconstruction.

Table 1: Performance of sparse view sinogram restoration.

SSIM PSNR MSE

Restored

. 0.978
sinogram

38.596 13.637

I11.1l. Results of tomography
reconstruction

The purpose of sparse view sinogram restoration is to
complement the projections of the unacquired angles,
thus avoiding the generation of streaking artifacts in the
tomographic reconstruction. Therefore, we perform the
filtered back-projection reconstruction of the sinogram
restoration results obtained in the previous section to
obtain tomographic slices. And we compare the iterative
reconstruction (SART-TV [5]) and image post-processing
(DDNet [6]) methods. The results are shown in Fig. 3 and
Table 2, respectively.

Since MPI has no background structure information,
the number of projections required for its reconstruction
is much smaller than that of CT. For sparse view recon-
struction in MPI, only 9 views of projections are used for

10.18416/ijmpi.2023.2303010

Table 2: Performance of tomography reconstruction

SSIM | PSNR MSE
SART-TV | 0.328 | 15.852 | 1752.913
DDNet | 0.792 | 21.053 | 615.589
Ours 0.801 | 31.485 65.790

tomographic reconstruction. Therefore, in this case, the
results of iterative reconstruction are not satisfactory. For
image post-processing networks, due to the more com-
plex features of the image domain, excessive learning
increases the risk of network overfitting and poor artifact
removal in and around the signal. Our proposed sparse
view sinogram restoration network avoids the generation
of streaking artifacts and achieves the best performance.

IV. Conclusion

In this study, we propose a sparse-view sinogram restora-
tion network that improves the tomographic temporal
resolution of projection MPI by four times. The effec-
tiveness of the proposed method has been preliminarily
validated on simulated datasets and outperforms itera-
tive reconstruction and deep learning-based image post-
processing methods.
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