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Abstract
Due to the complex physical behavior of the nanoparticles, we propose to reconstruct the 2-D SPIO concentration
image from the 1-D voltage signal in MPI scanning, and we aim to reconstruct the high-resolution 2-D image directly
from the voltage signal by using the deep learning based generative adversarial network (GAN). We first built a large
simulation image dataset, which includes 291,597 binary images and each image’s corresponding MPI voltage signal
simulated with our developed MPI simulation software MPIRF. By using the large simulation dataset, we trained a
conditional-GAN model, which we termed “MPIGAN”, that can successfully convert the 1-D MPI voltage signal to
the high-resolution MPI image directly and precisely. Experiment results showed that, compared to the traditional
methods, our proposed MPIGAN could better retrieve the fine-scale structure of the patterns of images from the 1-D
voltage signals, and could achieve better reconstruction performance in both visual and quantitative assessments,
e.g., SSIM, MSE, PSNR. Our study provides a promising end-to-end AI solution for efficient and high-resolution
magnetic particle imaging reconstruction.

I. Introduction

Magnetic Particle Imaging (MPI) is an emerging imaging
technique based on physical interactions between time-
varying magnetic fields and superparamagnetic nanopar-
ticles (MNPs) [1]. Two different methods are primarily
used for magnetic particle image reconstruction. One
relies on measurement of the system matrix [2]. However,
the measurement of system matrix is really time consum-

ing. Besides, the system matrix needs to be explicitly set
up and stored in memory beforehand, which is memory-
consuming and leads to relatively long reconstruction
times. For these reasons, some model-based methods,
such as the x-space method, were proposed to reduce
the computational time as well as improve the recon-
struction performance [3]. However, the model-based
approaches are idealized and neglect the relaxation of
the particles.
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Figure 1: Selected images from the MPI simulation dataset.

The machine learning method of neural network has
recently been introduced for MPI 2-D image reconstruc-
tion [4]-[11]. In MPI, convolutional neural networks have
been used for reconstructing hybrid 1-D [4] and simu-
lated 2-D data [5][6], and three frequency components
[7]. A deep image prior has also been used to recon-
struct measured 3D MPI data [8]. Recently, Generative
adversarial networks (GANs) have been introduced in
the machine learning community as an excellent image
generative model. Compared to neural network, which
aims for ‘classification’ task, GANs emphasizes image
generation. Since it was proposed in 2014, GANs have
proven to be very successful for generating high-quality
images [12][13], not only for natural images, but also for
medical images. Despite the success of GANs for image
reconstruction such as super-resolution synthesis [14],
and for improving the 3D imaging temporal resolution
of projection MPI [15], there still lack a GAN model for
high-resolution magnetic particle image reconstruction
directly from the detected magnetic particle signals.

In our current study, we propose a novel GAN archi-
tecture, which we name MPIGAN, to reconstruct high
quality 2-D images directly and quickly from collected
magnetic particle signals.

II. Material and methods

In our study, we first built a large simulation image
dataset and generated each image’s corresponding one-
dimensional MPI voltage signal. By using the dataset, we
were able to train our generative model MPIGAN for MPI
image reconstruction.

II.I. Large simulation dataset for MPI
generation

In order to build our large simulation dataset, we first cre-
ated a binary image dataset. The dataset contains a total
of 291,597 images, including three forms of pattern de-
sign: bars arranged with parallel vertical (97,199 images),
parallel horizontal (97,199 images), and both directions
crossed (97,199 images). The bars in the images varied
in number, width, spacing and length to simulate phan-
toms for MPI. As shown in Figure 1, the white area in the
image indicates the location contains magnetic nanopar-
ticles and the black area indicates the background. The
size of the images is 128 × 128 pixels.

We then used our developed MPI simulation software
MPIRF [16] to generate each binary image’s correspond-
ing one-dimensional MPI voltage signal from the receive
coil. Assuming that the receive coil is homogenous ev-
erywhere and the magnetic particles are in thermal equi-
librium, as in equation (1), the induced voltage of the
receive coil can be formulated as

u (t ) =−µ0moρ
Rβ
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β =
µ0m

kB T p
, (2)

whereµ0 is the permeability of free space, mo is the mod-
ulus of the magnetic moment of a single particle, ρR is
the receiver coil sensitivity,β is a constant that represents
the intrinsic property of the magnetic nanoparticle,kB

denotes the Boltzmann constant and T p denotes the par-
ticle temperature. H D is the driving field strength, G is
the selected field gradient, c is the particle concentra-
tion, L ′ is the derivative of Langevin function, and H
is the superposition field strength of the selection field
and drive field at time t and point l . After obtaining the
one-dimensional signal, it is normalized and then used
as the input signal for MPIGAN.

The simulation of the voltage signal was based on
the Langevin model of paramagnetism. The field of view
(FOV) was defined to have a size of 12.8 mm×12.8 mm,
the particle size was 30 nm, the particle saturation mag-
netization was 0.6 T, the particle concentration was 50
mmol/l, and the temperature of particle was 293.15 K. A
selection field gradient of 2.0 T/m was generated along
the x-direction, and an excitation field gradient of 12 mT
with 24.51 KHz frequency was applied in the same direc-
tion. A selection field gradient of 2.0 T/m was generated
along the y-direction, and an excitation field gradient
of 12 mT with 26.042 KHz frequency was applied in the
same direction. The repetition time was 652.8µs and the
sample frequency was 2.5 MHz. We used 2D-excitation
for simulating the data. We only used the signal in the
x direction as the input to MPIGAN, and the dimension
of the input signal is 1×1632. The signal received by the
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Figure 2: Schematic illustration of the reconstruction method.

Figure 3: Schematic illustration of the MPIGAN architecture.

receive coil is entirely from the voltage signal generated
by the particles, and will not receive the signal from the
excitation field.

By creating the large binary image dataset and sim-
ulating each image’s corresponding MPI voltage sig-
nal from receive coil, we were able to train a deep-
learning-based generative model that can realize the
high-resolution MPI image reconstruction from the orig-
inal one-dimensional MPI voltage signal, as shown in
Figure 2.

II.II. MPIGAN

Our MPI reconstruction framework is based on the con-
ditional GAN [12], which can realize the reconstruction
of two-dimensional images from the one-dimensional
vector. By using the large binary image dataset and their
corresponding simulated voltage signals, we trained a
GAN model, which we termed ‘MPIGAN’, to convert the
induced 1D MPI voltage signal to the 2D MPI image. A
schematic illustration of the detailed MPIGAN architec-
ture is depicted in Figure 3.

Our MPIGAN architecture was loosely inspired by [12]
to complete the reconstruction of one-dimensional data
to two-dimensional images. DCGANs are an extension
of GANs [13], in that convolutional layers are added to
the generator and discriminator architecture to improve
the stability of GAN-generated images.

The loss function of traditional GANs is equivalent

to the Jensen-Shannon divergence. However, there is a
serious problem with the Jensen-Shannon divergence.
When the distributions between original data and the
generated data do not overlap, the Jensen-Shannon diver-
gence reaches zero and causes the model iteration stops.
To improve the stability of training, we use Hinge loss in
generator and discriminator to ensure that only those
samples that are not reasonably distinguished from each
other will have an effect on the gradient. The generator
loss function also contains a constraint term, which is the
mean absolute error (MAE) between the generator out-
put and the ground truth image weighted with a control
parameter λG, summed with the binary cross entropy of
the discriminator’s decision using the generator output.
Here, λG is set to the value of 10.

For obtaining a reliable MPIGAN, the large MPI
dataset associated with its simulated voltage signals was
randomly divided into two splits at a rough ratio of 30:1,
282,525 pairs were used for training (n = 291,597, 96.9%)
and 9072 pairs for testing (n = 291,597, 3.1%). In both
training and testing sets, the proportion of images con-
taining horizontal bar, vertical bars, and two directions
crossed were the same and had a ratio of 1/3. The gen-
erator model was trained with the stochastic gradient
descent (SGD) optimization algorithm. The generator
learning rate was set to 2×10−4, the discriminator learn-
ing rate was set to 2×10−3, and the batch size was set to
400. The network was iterated for a fixed number of 300
epochs until the loss function reached a stable state. For
the generator G of GAN model, each block except the
last block consisted of one deconvolutional layer with
4×4 kernels followed by a batch normalization (BN), and
subsequently by a rectified linear unit (ReLU) activation.
ReLU activation was used for all layers of generator ex-
cept for the output layer, which used Tanh activation.
The discriminator D undertook a classification task to
differentiate the reconstructed images from the ground
truth. Each of which included a convolutional layer with
4×4 kernels followed by a batch normalization and a
leaky ReLU layers, except for the first and last block. For
the first block of D, no BN was used, convolution oper-
ation was followed by a leaky ReLU layer. For the last
block of D, a convolutional layer was cascaded and the
sigmoid activation function output the classification re-
sults. The input and output channels of deconvolutional
and convolutional layer are shown in Figure 3.

III. Experiments and Results

To verify the performance of our proposed framework for
reconstructing MPI images, we compared the reconstruc-
tion of MPIGAN with system matrix (SM) and x-space
method. SM establishes the relationship between the
spatial tracer position and the frequency response. X-
space method setup a direct mapping of the measure-

10.18416/ijmpi.2023.2303011 © 2023 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2023.2303011
https://dx.doi.org/10.18416/ijmpi.2023.2303011


International Journal on Magnetic Particle Imaging 4

Figure 4: Random test set reconstructions using both conven-
tional methods, as well as the proposed MPIGAN method. Left
to right: ground truth, MPIGAN, x-space, and system matrix
reconstruction.

ment signal to the corresponding spatial position. The
choice of field-free point trajectories was Lissajous trajec-
tory both in SM and x-space method, and the trajectory
density parameter was set to 16. Specifically, in SM recon-
struction, the Kaczmarz algorithm was used [16]. There
was not frequency selection applied to the rows of the
MPI system matrices. As for the x-space reconstruction
method, we used the fully automated gridding to recon-
struct the Lissajous trajectory, which refers to the article
published by Ozaslan et al.[17].

Samples of reconstructed images using SM, x-space,
and MPIGAN are visualized in Figure 4. As shown in the
figure, images reconstructed with x-space are very blurry,
and the patterns in the images cannot be distinguished
from the background. The fine-scale information con-

Table 1: Quantitative results of the comparison study using
different methods.

MPIGAN SM X-space
MSE 0.1307* 0.1432 0.1620

PSNR 10.2285* 8.9832 8.6078
SSIM 0.8070* 0.7843 0.5938

*indicates p<0.05

tained in the images is lost. The images reconstructed
with SM look better, and were able to distinguish the
bars with relatively close distance, but the reconstructed
images contained stripped noise. In contrast, MPIGAN
generates images that are visually close to the real im-
age and retains the rectangular shape and spacing to the
maximum extent, resulting in higher spatial resolution
of the generated images compared to SM and x-space.

We also used three metrics to quantify the reconstruc-
tion performance of SM, x-space, and our proposed MPI-
GAN, which included peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM) [18] and mean
square error (MSE). The results are shown in Table 1.

The metric values in the table were statistically tested
by using permutation test. For each reconstructed image
in the dataset, we randomly picked 1000 images other
than the ground truth (distractor), and calculated the
metric values between the distractor images and the re-
constructed images. The procedure was repeated for
each image in 10 images randomly selected from test
set, and a distribution of metric values was created. We
used the distribution to determine the probability (α) of
obtaining the averaged metric values for the true image
reconstruction against the null hypothesis that the met-
ric value for reconstructing the ground truth is the same
as distractor images (p<0.05).

IV. Discussion
In this study, we propose a large simulated dataset con-
taining pairs of 2D MPI images and their corresponding
simulated 1D MPI voltage acquisition signals. By using
this dataset, we developed a deep-learning-based GAN
model, which we termed ‘MPIGAN’, to realize direct high-
resolution MPI reconstruction from voltage signals. MPI-
GAN outperformed system matrix and x-space in terms
of the quality of the reconstructed image. Compared to
previous studies using deep learning models to train a
more precise super-resolution system matrix, our work
provides an end-to-end solution for efficient and high-
resolution MPI reconstruction. Though our ultimate goal
is to train a robust end-to-end generative model for di-
rect real measured data reconstruction. There are several
limitations in our current study. One is that our simu-
lated dataset for training the MPIGAN is binary images
with only bar shapes, while in actual MPI scan, the par-
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ticle concentration is presented as grayscale with irreg-
ular shapes. Another is that the distribution of the real
measured MPI data was not fully considered in our GAN
model, which greatly limits its application in measured
data reconstruction. Finally, in our current study, MPI-
based noise-model were not included in our GAN model
training. In our next study, we will use gray-scale images
containing more varied shapes to train our model. We
will add various noise models to our dataset for model
training to improve the robustness of our model. We will
further develop more robust GAN model compatible to
MPI image sequences with varied parameter settings.

V. Conclusion
To achieve fast reconstruction of MPI signals, we propose
an MPIGAN model. Compared with other reconstruction
methods, MPIGAN generates images with higher quality.
Meanwhile, the model has been tested on simulated data
only, and subsequently, we will further consider to prove
the effectiveness of the model for data measured on real
MPI scanners.
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