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Abstract
Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality, which uses the nonlinear
response of superparamagnetic iron oxide nanoparticles to the applied magnetic field to image their spatial
distribution. Due to the direct feedthrough of excitation signals, the existing MPI systems directly filter out the
fundamental frequency component of the received signal, resulting in the loss of first harmonic information. In
this work, we proposed a deep learning (DL) method adopting self-attention mechanism, which can effectively
recover fundamental frequency component of the signals in the presence of background noise. At the same time,
our method deals with two-dimensional time-frequency spectrum obtaining by short time Fourier transform (STFT)
from the time domain signals. The performance of our method is analyzed via simulation experiments, which
show that our method can effectively recover first harmonic information and obtain high quality MPI reconstructed
images.

I. Introduction

Magnetic particle imaging (MPI), a new tracer based
imaging method, has been proposed by B. Gleich and J.
Weizenecker [1]. MPI utilizes the nonlinear magnetiza-
tion response of superparamagnetic iron oxide nanopar-
ticles to generate an image of their spatial distribution
with high resolution, contrast, and sensitivity [1-3]. Due
to the inherent structure of the MPI system (coaxial as-
sembly of transmit and receive coils), in addition to par-
ticle signal, the received signal is coupled with excitation

signal, which can be many orders of magnitude larger
than the particle signal. The existing systems directly
filter out the fundamental frequency component of re-
ceived signal by analog/digital filtering, resulting in the
loss of first harmonic, which breaks the shift-invariant
property of the imaging system and affects the quality of
reconstructed image [4]. Therefore, recovering the funda-
mental frequency component of the time domain signal
contributes to high-quality image reconstruction.

Currently, there are two common-used reconstruc-
tion methods, the X-space method [5] and the system
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Figure 1: Representative simulated phantoms.

function method [6]. The X-space method maps the re-
ceived signal directly to the image domain [5]. Therefore,
the loss of first harmonic has a great impact on recon-
struction. The system function method establishes a
system matrix describing the relationship between par-
ticle distribution and received signal [6]. The recovery
of first harmonic provides more information for the sys-
tem matrix, which helps to improve the reconstruction
quality. Some studies showed that the lost first harmonic
corresponds to offsets of the constant (or dc) component
of the MPI image and restored it to improve the quality
of reconstruction [4, 7, 8].

In this paper, we propose a deep learning (DL)
method to recover the fundamental frequency compo-
nent (ReFFNet). We fuse the information of time and
frequency domain to obtain two-dimensional (2D) time-
frequency spectrum, and recover the fundamental fre-
quency component through end-to-end processing of
the spectrum. We apply consecutive residual blocks with
attention module to learn useful features and suppress
the residual features [9, 10]. Specifically, we use channel
attention module to exploit the features from different
channels and suppress the channels that originate from
noise according to the channel weights. Besides, we ex-
tract features from the time and frequency dimensions re-
spectively, and recover the fundamental frequency com-
ponent by fusing the features. The simulation experi-
ments prove the effectiveness of our method, which can
recover the first harmonic information in the presence of
harmonic interference and Gaussian noise, and obtain
high-quality signal and reconstructed image.

II. Datasets

In this study, we obtained 100,000 dot images with size
of 21×21 as simulated phantoms using built-in Shepp-
Logan function of MATLAB (R2020a) (90,000 as training
dataset and 10,000 as testing dataset). The dots in the
images simulated the particle distribution. Thus, the
number (1-5), position, and size of the dots were all ran-
dom. Fig. 1 shows the simulated phantom.

Next, we generated the time domain signal based on
the phantoms. We simulated a field-free point (FFP) MPI
scanner with Cartesian trajectory. In the simulation, the
Langevin function was used to describe the nonlinear
magnetization of the magnetic particles M (r, t ). The
diameter of the magnetic nanoparticle was set to be 25

Figure 2: Schematic diagram of scan sequence and time-
frequency spectrum generation. (a) Field of view (FOV). (b)
FFP trajectory corresponding to the FOV in (a). A continuous
focus field is used to move the FFP at a constant speed along
the y direction, which can be achieved by applying an alter-
nating magnetic field with a triangular wave function. And the
drive field oscillates rapidly along the x direction and is used
to excite the response signal of the particles. ti represents one
drive period. (c) The acquisition of time-frequency spectrum.
We divide the time domain signal into frames of equal length by
rectangular window function based on drive period ti , followed
by STFT to obtain the 2D spectrum.

nm. A selection field with a gradient of (-0.5, 1) T/m
in (x , y ) directions was utilized. The drive fields were
simulated as a 5kHz cosine wave along the x direction,
and a continuous focus field at a rotation rate of 7.94 T/s
( fF=39.68Hz) was simulated along the y direction (see
Fig. 2(b)). Besides, we simulated a 2D field of view (FOV)
with a size of 100×100 mm 2 and pixel spacing of 5mm.

In order to better simulate the received signal col-
lected in the MPI scanner, we added a degradation model
to the generated signal, including harmonic interference
and Gaussian noise, with signal-to-interference ratio at
5dB and signal-to-noise ratio at 10dB [8]. Besides, we
applied a digital band-stop filter to simulate the process
of removing the fundamental feedthrough signal in prac-
tice, and obtained the signal with noise and without fun-
damental frequency component.

Further, we obtained the 2D time-frequency spec-
trum by STFT of the time domain signal (see Fig. 2(c)).
Compared with the time domain or frequency domain
signal, the 2D spectrum is composed of the frequency
spectrum of different time periods. Thus, it is dominated
by the frequency domain information and integrates the
particle distribution information of time domain, that is,
the trajectory information of FFP. Specifically, the signal
generated contains one Cartesian cycle of the FFP for
the entire FOV and includes 63 drive periods. Thus, the
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Figure 3: Overall architecture of the proposed ReFFNet.

signal is divided into L frames of equal length accord-
ing to the drive period ti by rectangular window function
w (•), and each frame includes one complete drive period.
Then, STFT is applied on each frame:

Ûl (k )=
N−1
∑

n=0

û l
M N P e − j 2πnk/N (1)

where û l
M N P is the l -th frame of the original signal, Ûl (k )

is the k -th spectrum component after STFT of the l -th
frame, and N is the frame length. The frequency spec-
trum obtained by each frame is sorted by column to ob-
tain the 2D time-frequency spectrum S ∈CK ×L :

S =
�

Û1 (k )
′

, . . . ÛL (k )
′ �

(2)

The horizontal axis represents the time domain, contain-
ing the trajectory information of FFP, and the vertical
axis represents the frequency domain, containing the
information of different harmonics of the signal.

The 2D spectrum of the original generated signal and
the processed signal are obtained as the label and input
respectively. In addition, by balancing the contribution
of different harmonics and the size of our network model,
we believed that the signal composed of the first eight
harmonics contained most of the information of the orig-
inal signal. Thus, we further extracted the first eight har-
monics of the time-frequency spectrum as the label and
input of our network model.

III. Methods
An overview of the proposed ReFFNet is presented in Fig.
3. Concretely, given a processed spectrum I ∈RH×W ×2

with H harmonics, W periods, and 2 channel (real part
and imaginary part), we first utilized a convolution layer
to generate compact feature maps Î ∈RH×W ×C captur-
ing time and frequency information. Then, to minimize
the interaction of time and frequency dimension, we
applied consecutive residual attention blocks to extract
local features. Specifically, two parallel processing paths
are designed to deal with time and frequency domain
features respectively. Each path contains N continuous
residual attention blocks. The two paths extract local

Figure 4: Structure of residual attention block.

features IT in time dimension and IF in frequency di-
mension respectively. Then, we concatenate IT and IF

to get the fusion representations.
The structure of residual attention block in the two

paths is basically the same, composed of two convolu-
tion layers, one rectified linear unit, one residual skip
connection, and one self-attention block (see Fig. 4). The
self-attention block we used here is global average pool-
ing (GAP), which computes the channel-wise statistic
z̃ ∈R1×1×C of the given input feature map Ĩ by averaging
across each K̂ ×L spatial dimension. The c -th channel
statistic z̃c is calculated as follows:

z̃c = FG AP (Ĩc ) =
1

K̂ ×L

K̂
∑

k̂=1

L
∑

l=1

Ĩc (l , k̂ ) (3)

where Ĩc ∈RK̂ ×L , ∀c ∈ {1, . . . , C } refers to the c -th feature
of the input feature map. Given an input feature map Ĩ ,
the self-attention block deals with it as follow:

HS AB

�

Ĩ
�

= Ĩ
⊗

δ
�

G AP
�

Ĩ
��

(4)

where G AP is the channel-wise attention, δ is sigmoid
activation, and

⊗

donates element-wise multiplication.
The difference between time residual attention block and
frequency residual attention block lies in the size of the
convolution kernel. In time path, the size of the convolu-
tion kernel is 1×3, focusing on the features of distribution
of particles, while in frequency path, the size of the con-
volution kernel is 3×1, extracting the features between
the harmonics. Finally, three convolutional layers were
used to reconstruct the feature and recover the spectrum
with fundamental frequency component after removing
the background noise.

We evaluated the result of our network from three
aspects. Firstly, the enhanced spectrum was obtained by
our network, and we adopted the mean absolute error
(MAE) to calculate the average per-pixel differences be-
tween the label and the result. Besides, the spectrum was
restored to original size by zero padding and transformed
to the time domain signal by Inverse Fast Fourier Trans-
form. Then, the MAE of temporal signal was calculated.
Finally, the time domain signal was mapped to image by
standard X-space algorithm. Peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) were employed
to evaluate the image quality.
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Figure 5: The time-frequency spectrum, time domain signal,
and reconstructed image of the ground truth label, input of our
model, and result of our model. (a) is the phantom image, (b)
is the real and imaginary part of the spectrum, (c) shows ten
consecutive periods in the temporal signal obtained from the
corresponding spectrum, and (d) is the corresponding recon-
structed image and the nonnegative processed image.

IV. Results
To validate the effectiveness of our method, we tested
our model on the simulation dataset. The experimental
results are summarized in Table 1 and Fig. 5. From Table
1 and Fig. 5, due to the loss of fundamental frequency
component, the amplitude and phase of the input signal
are affected. At the same time, the existence of noise fur-
ther distorts the time domain signal (MAE=523.25×10−2).
Besides, the degradation from temporal signal creates ar-
tifacts on the reconstructed image, which seriously affect
the image quality (PSNR=8.40, SSIM=4.69×10−2). And
from the time-frequency spectrum of input, we can find
that the first harmonic is missing and the spectrum is
interfered by noise. From the result, our method can re-
cover the first harmonic while removing the background
noise. Thus, it reduces the errors of both real and imagi-
nary part of the time-frequency spectrum. From the time
domain signal, our method recovers the amplitude and
phase information of the signal, reducing the error by two
orders of magnitude (MAE=6.28×10−2). Besides, the im-
age reconstructed from the enhanced signal can also ac-
curately describe the particle distribution (PSNR=44.47,
SSIM=99.20×10−2).

V. Discussion
The loss of fundamental frequency component is an in-
evitable problem due to the structure of MPI system, and
it is still a challenging task to recover the signal in the
presence of various background noise. In this work, we
designed a network model, which extracted local fea-

Table 1: Quantitative results of our method.

Input ReFFNet

Spectrum MAE ↓ Real 56.77±16.92 0.23±0.10
Imag 144.15±32.67 4.97±2.78

Time Domain
Signal

MAE ↓(×10−2) 469.37±7.82 11.29±0.19

Reconstructed
Image

PSNR ↑ 8.59±1.37 43.03±3.82
SSIM ↑(×10−2) 6.86±4.71 98.91±0.63

tures from time and frequency domain to get only one
kind of information, so as to model the relationship be-
tween different dimension and recover the fundamen-
tal frequency component through high-frequency har-
monics. We used residual blocks to increase the mod-
eling power. This learned only the difference between
the input and the target output and transformed the
distorted-spectrum to a recovered-spectrum efficiently.
Besides, with GAP, the importance of different channels
was learned, and the value of the feature map was se-
lectively attenuated or amplified according to their im-
portance for more effective training. In addition, GAP
increased the modeling capacity of the network to effec-
tively recover the fundamental frequency component in
the presence of noise. Moreover, we added background
noise and applied a digital filter to the dataset, to reduce
the gap between the simulated data and the real data.
Thus, the trained model is expected to be effective on the
real data from the MPI scanner.

Besides, we dealt with 2D time-frequency spectrum
obtained by short time Fourier transform (STFT). The 2D
spectrum contains the trajectory information of FFP in
different time periods, which directly reflects the distri-
bution of particle concentration, and different harmonic
information (properties of particles and system infor-
mation). For the network model, the relationship be-
tween different harmonics can be fitted from time and
frequency domain to recover the fundamental frequency
component. From the simulation results, we have shown
that ReFFNet provides a satisfactory performance on the
recovery of fundamental frequency component.

However, our method remains highly dependent on
data. Therefore, the design of digital filters can be op-
timized and a more complicated noise model can be
created to distort the generated signal, making our net-
work model more robust and generalized to different
MPI systems. Besides, we will further study the effective-
ness of different attention mechanisms and upgrade our
network model. And we will consider the relationship
between the two dimensions of time and frequency, and
further model the long distance dependency in the global
space. In addition, the acquisition method of spectrum
will be studied to integrate more information, which is
benefit for network training.
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VI. Conclusions
We introduced a DL method for enhancing the MPI sig-
nal. Our model adopted the self-attention mechanism
to model relationship between different harmonics, and
used high-frequency harmonics information to recover
the first harmonic. At the same time, we dealt with 2D
time-frequency spectrum integrating the particle distri-
bution information in time domain with the harmon-
ics information in frequency domain. Our method was
proved to be effective in recovering fundamental fre-
quency component in the presence of background noise,
and based on the restored spectrum, we can obtain high-
quality MPI images.
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