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Abstract
Magnetic particle imaging (MPI) is an emerging and highly sensitive imaging method. Multi-color MPI allows
simultaneous identification of different materials. Obtaining precise relaxation time is one of the key challenges in
achieving multi-colored MPI. In this paper, we propose a physical information based deep learning framework to
accurately decompose the mixed signal into the original independent relaxation signals. By transforming the Debye
relaxation model into a differential loss function, our network is able to efficiently utilize physical prior information.
In simulation experiments with different signal-to-noise ratios and different signal counts, our method shows better
performance than the PDCO algorithm. The imaging effect of our algorithm and PDCO algorithm in the presence
of multiple materials was evaluated by three-color imaging simulation experiment. In addition, spectral imaging of
a digital vascular phantom was simulated by combining a field-free point with homogeneous pulsed excitation.
In vascular phantom simulation experiment, our method images blood vessels, metal guidewires, and stents in a
single imaging process, showing excellent application potential in cardiac stent surgery.

I. Introduction

Multi-color MPI enables reconstruction of separate im-
ages for the catheter and the vessels from the mixed sig-
nal [1]. The relaxation mechanisms of magnetization in
response to excitation magnetic fields are important fea-
tures of magnetic nanoparticles (MNPs) [2]. It is possible
to obtain a mixed signal with constant Néel and Brown-
ian relaxation time by field-flat phase in pulse excitation.
Thus, the relaxation time can be used as a criterion to
distinguish different materials in multi-color MPI. How-
ever, it’s challenging to separate the original multiple
relaxation signals from the mixed signal.

In this study, we developed a deep learning frame-
work embedded with physics information to convert the
mixed signal to multiple relaxation signals. To embed the
physical prior information, we convert the Debye relax-
ation model into the corresponding partial differential
loss. To evaluate the performance of the algorithm, we
performed simulation signal decomposition and imag-
ing experiments on our method and PDCO algorithm [3].
The experimental results show that our algorithm shows
better performance in both signal decomposition and
imaging experiments because it avoids the systematic
error caused by discrete representations.
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Figure 1: The network architecture of our method.

II. Theory

II.I. Trapezoidal-Waveform Excitation
We simulate decay signal in the field-flat portion under
pulse excitation. The magnetization magnitude M (t ) in
the field-flat phase can be described with relaxation time
τ as follow [4]

M (t ) =M (0)× e −
t
τ , (1)

where M (0) denotes the magnetization when the mag-
netic field is turned off. Normalize the magnetization,
the delay signal can be computed by

Sf l a t (t ) =
w

τ
e −

t
τ ×u (t ) + ε (t ) , (2)

where w denotes the magnitude of the relaxation sig-
nal, and ε (t ) denotes the noise in the signal. u (t ) is the
Heaviside step function.

Considering only one-sided signals and multiple ma-
terials, Sf l a t (t ) can be approximated as the sum of sev-
eral discrete relaxation signals

Sf l a t (t )≈
∫ n

i=1

wi
′e −

t
τi + ε (t ) , (3)

where wi
′ = wi

τi
represents the i -th signal component as

a percentage of the total signal with wi denoting the pro-
portion of the i-th material in the total material. The τi

denotes the relaxation time of the i -th signal.

II.II. Relaxation physics-informed model

With fi=e −
t
τi , we can get its first- and second-order par-

tial differential with respect to t as follows [5].

d fi

d t
=−

1

τi
e −

t
τi , (4)

d 2 fi

d t 2 =
1

τi
2

e −
t
τi , (5)

By transforming the Debye relaxation model into dif-
ferential constraints, a system of equations for describing
multiparticle relaxation processes can be given by

∫ n

i=1

wi
′ fi + ε (t ) = Sf l a t (t ) , (6)

(Ft )
2− Ft t F = 0, (7)

c
d fi

d t
< 0, (8)

where Ft = {
d f1
d t , d f2

d t , . . . , d fn
d t } is the first-order partial

derivative of F = { f1, f2, . . . , fn} with respect to t , and

Ft t =
¦

d 2 f1

(d t )2
, d 2 f2

(d t )2
, . . . , d 2 fn

(d t )2

©

is the second-order partial

derivative of F with respect to t .

II.III. Physics-informed deep learning
framework

To implement the solution of neural networks, we
assume multiple signal prototypes O={o1, o2, . . . ,om} ,
which are the output of the signal decomposition module.
oi and f j represent the i -th component of O and the j -th
component of F , respectively. We define the similarity
matrix D of oi and f j as their mean square error.

c Di j=
�

oi− f j

�2
, (9)

According to D we can get a new order of O as
Õ={õ1, õ2, . . . ,õm} to minimize the mean squared error
of the first n variables of Õ and F . Thus, we can get a
constraint model of the neural network.

n
∑

i=1

xi õi + ε (t ) = Sf l a t (t ) , (10)

xi=0 i > n , (11)

Õt Õt−Õt t Õ=0 (12)

Õt < 0, (13)

Õ is the output of the neural network, Õt is the first-order
partial differential of Õ with respect to t and Õt t is the
second-order partial differential of Õ with respect to t .
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II.IV. Network architecture and loss
function

Our goal is to learn an output space that can represent all
possible signal components and a corresponding weight
space when the weights of a real signal approximate
their corresponding true weights and the weights of non-
existent signal components approximate zero.

The specific network architecture is shown in Fig.1.
It contains three network modules, which are a feature
extraction module composed of two linear layers and
two tanh layers, a signal decomposition module for char-
acterizing the signal space of magnetic particles, and a
signal estimation module to obtain signal weights. The
loss function consists of four loss terms and is defined as

L=Ls i g na l+Lw e i g h t+Ld i f f e r +Lr e c o n , (14)

Ls i g na l denotes the MSE of the independent signal com-
ponents and the real signal.

Ls i g na l =

�

�

xi õi − wi
′ f i

�2
i ≤ n

0 i > n
, (15)

Lw e i g h t means weight Loss which is given by

Lw e i g h t=

�
�

x̃i−wi
′ �2

i≤n
(x̃i )

2 i>n
, (16)

x̃i is the i -th output of the weight estimation module. In
order to incorporate physical information in our model,
we defineLd i f f e r as

Ld i f f e r=




Õt Õt−Õt t Õ




 . (17)

To resemble the constraint signal with the input signal,
we define reconstruction loss as follows

Lr e c o n =
















n
∑

i=1

xi õi −
n
∑

i=1

wi
′ fi
















. (18)

III. Materials and Methods

III.I. Data Simulation

Regardless of the effect of convolution, we simulate
based on (??) and the proportions of individual mate-
rials at a certain point.

we constructed 1000 data with 6 different signal-to-
noise ratios from 1 dB to 30 dB and 9 different signal
component counts from 2 to 10 as training data. We con-
structed 200 data with 6 different signal-to-noise ratios
from 1 dB to 30 dB and 7 different signal component
counts from 2 to 8 as test data.

Figure 2: Signal decomposition experiments: Signal decompo-
sition experiment with a signal-to-noise ratio of 5dB and 30 dB.
GT denotes the ground truth of the original multiple relaxation
signals.

III.II. Training details and comparison
algorithms

Our model was trained in Ubuntu 20.04 with Intel®
CoreTM i5-10400F CPU @ 2.90GHz and GeForce RTX 3080.
Before testing, we trained a total of 60 epochs, each with
500 data per epoch.

We compare algorithm performance with PDCO algo-
rithms that apply non-negativity constraints and L1 regu-
larization. The linearly constrained convex optimization
problem solved by PDCO is assumed to be of the follow-
ing form:

mi n w,r λ1‖w‖1
2+

1

2
λ2‖w‖2

2+
1

2
‖r‖2

2, (19)

Kw+ r= Sf l a t , (20)

w> 0, (21)

Where K is the discrete Laplace transform consisting of

K j ,h = e −
t j
τh , h = 1,2, . . . m , j = 1,2, . . . ., l and τh is the h-

th of preset relaxation time. In this work, we set λ2 = 1
which is the same as default settings of PDCO and λ1 =
λ2.

III.III. Evaluation Metrics
In this work, mean absolute error (MAE) is used to evalu-
ate differences in performance between methods. MAE
is defined as

M AE
�

Õ , F
�

=
m
∑

i=1

l
∑

t=0

�

�xi õi (t )− wi
′ f i (t )

�

�

ml
, (22)
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Figure 3: MAE of signal decomposition simulation experiment.
a) MAE heatmap of PDCO and our method. b) different number
of signal components with signal-to-noise ratio set of 5dB. c)
different signal-to-noise ratio with signal components number
of 4.

Figure 4: Three-color imaging simulation experiment. a) Imag-
ing results of our method and PDCO. b) MAE distribution image
of relation time calculated by our method and PDCO

Given the characteristics of exponentially attenuated sig-
nals, weak signals after attenuation will not be consid-
ered. A control function is designed to filter weak signals
and balance the error of smaller signals.

G ( fi ) =

�

1 fi (t )>ϕ##
0 fi (t )≤ϕ

, (23)

M AE
�

Õ , F
�

=
1

m

m
∑

i=1

l
∑

t=0

G (F )

�

�xi õi (t )− wi
′ f i (t )

�

�

fi (0)
∑l

t=1 G ( fi )
,

(24)
fi (0) represents the value of the signal at 0.

Figure 5: Digital vascular phantom experiment. a) Imaging
results of our method and PDCO. b) Local details of imaging
results. c) MAE distribution image of relation time calculated
by our method and PDCO

IV. Results and Discussions
We compare the performance of our method with PDCO
under different signal-to-noise ratios (Fig. 2). At a signal-
to-noise ratio of 30dB and 5dB, the MAE of our method
is 0.22 and 0.26 lower than that of PDCO, respectively.

As shown in Fig.3 a) the mean standard error of our
method is three times smaller than the mean standard
error of PDCO. Fig.3 b) and c) show that the variance
of our method is 14 times smaller than the variance of
PDCO.

In addition, we designed a three-color imaging sim-
ulation experiment to verify the performance of our
method in multi-color imaging.

According to Fig 4 a), red, blue and green refer to dif-
ferent magnetic particle materials with relaxation times
of 20, 40, and 60, respectively. A mixture of three primary
colors represents the locations where multiple classes of
magnetic nanoparticles are present in this experiment.

As shown in Fig.4 a), our method has an accuracy of
92.67% for three-color imaging simulation experiment,
which is 45.49% higher than PDCO. Fig 4 b) shows that
our method for MAE on relaxation time in three-color
imaging simulation experiment is 6.87 lower than MAE
for PDCO

The relaxation spectral imaging of a digital vascular
phantom was simulated to show demonstrate imaging
results in cardiac stent surgery. The experiment used
the same experimental setup as the three-color experi-
ment, with three colors representing blood vessels, metal
guidewires and stent.

As shown in Fig.5, our method provides a clear image
of the digital vascular phantom, showing the distribution
of multiple materials in the mimicry.
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V. Conclusions
Our method shows excellent performance and poten-
tial in multicolor MPI. However, the model still has the
following points that can be improved.

1. After training, less than ten percent of the output
nodes used to characterize the signal space are acti-
vated, so we need to find a way to characterize the
signal space more comprehensively.

2. More prior information can be introduced to im-
prove network performance, such as the Langevin
function.
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