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Abstract

Magnetic particle imaging (MPI) is an emerging medical imaging technique that has high sensitivity, contrast and
excellent depth penetration. In x-space MPI reconstruction, the reconstructed native image can be modeled as
a convolution of the magnetic particle concentration with a point-spread function (PSF). The deconvolution is
practical and valuable as a post-processing way to deblur the native image. However, to accurately measure or
model the PSF used for deconvolution is challenging due to the imperfection of hardware and magnetic particle
relaxation. The inaccurate PSF may lead to the loss of the content structure of the MPI image. In this study, we
developed a dual adversarial framework with contrastive constraint (DC_GAN) to deblur the MPI image. We evaluate
the performance of the proposed DC_GAN model on simulated and real data. Experimental results confirm that our
model performs favorably against the deconvolution method that are mainly used for deblurring the MPI image.

l. Introduction In x-space MPI, the reconstructed image can be
modeled as a convolution of the native image with
point-spread function (PSF), leading to image blurring[3].

Magnetic particle imaging (MPI) is a tracer based on  Henpce, the deconvolution or other post-processing tech-

molecular imaging technique that can directly detect
and quantify the magnetization of SPIO[1]. MPI has no
signal from the background tissue, which provides it un-
paralleled contrast and sensitivity[2]. Combined with the
low-frequency magnetic fields and clinically safe mag-
netic tracers, MPI can present clinical-grade images with
zero tissue signal attenuation and high image sensitiv-
ity. Therefore, MPI has a great potential to be applied in
clinical applications.
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niques can be applied to deblur the image and improve
its resolution and contrast. The commonly used method
is to reconstruct the PSF of the entire sample supplied
to the device and then remove the ambiguity through
deconvolution[4]. However, a major problem of this
method is that we cannot accurately model or measure
the PSF due to the hardware imperfections and environ-
mental noise. In this case, with the increasing of the
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Figure 1: The overall architecture and losses of DC_GAN.

iterations, the structure content of the image will be dis-
torted and the ambiguity cannot be well removed. This
shortcoming is more obvious with low gradient strength.
Hence, itis important to address this challenge in x-space
MPI scanning.

In recent years, numerous data-driven methods have
been developed to deblur the image[5][6]. Although they
have achieved remarkable performance, these fully su-
pervised methods require paired data. We have known
that the ideal deblurred MPI images which retain a rela-
tively complete and clear content structure are not fully
available due to the incorrect PSF used for deconvolution.
Therefore, those supervised methods are not applicable
to solving this problem. Moreover, they would limit the
generalizations in practice due to the domain gap be-
tween the synthetic and real data.

In this study, we proposed an unsupervised method
that effectively minimize total MPI image blur. We de-
veloped a Dual Contrastive Deblurring method with ad-
versarial framework to model the latent-space repre-
sentation by exploring the relationship between the na-
tive image and high resolution deblurring data. Our
method achieves better performances than other deblur-
ring methods.

Il. Methods

The architecture of our method and the final objective
are as follow.

10.18416/ijmpi.2023.2303036

Il.1. Overview of the proposed method

Fig. 1 presents the overall architecture of our proposed
DC_GAN. Let X ={x € X} and Y ={y € Y} be the source
and target domains, domain X contains a series of native
MPI images with low gradient scanning, and domain Y
contains MPI images after deconvolution. Our method
has two generators: G: XBY and F : Y — X, which trans-
late images to domain X and Y, respectively. Moreover,
there are two discriminators, Dy and Dy which are used
to judge whether the image belongs to the corresponding
domain. The general objective is described blow.

I1.1l. General Objective

The overall loss function is given as:

L=AconLcon + AganLean + AiarLias ey

Where Lgan, Lige and L, are the GAN loss, identity loss
and contrastive loss, respectively, and A.,,,Agay and
Niq; are all scale values that denote their associated
weighting parameters.

The L., is established as the self-supervised con-
trastive loss to maximize the mutual information be-
tween corresponding patches of the input and the out-
put.

As for the GAN loss Lgay, it is expected to encour-
age the output to be visually similar to the images from
corresponding domain.

The identity loss is used to guarantees the features
from G (y) similar with features from y, thus preventing
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generators from unnecessary changes, avoid mode col-
lapse.

The performance of our proposed method is evaluated
using simulated and real MPI images, and the datasets
and experimental results are discussed.

Experiments and results

We used simulated and real MPI data for evaluation.

Datasets

111.1.1. Simulated data

In this study, we selected 1600 images from the MNIST
dataset and resized them to 101x101 as simulated phan-
toms for MPI. Combined with Langevin function, we use
MATLAB to program the x-space reconstruction method
as described in [7] to generate simulated MPI images for
training.

We test our proposed method on different data, show-
ing thatitincreases the MPI image quality compared with
the deconvolution. We design two-tube phantoms with
different distances to evaluate the spatial resolution of
the MPI image.

111.1.2. Real data

In order to verify the effectiveness in real data, we
choose two tube phantoms as testing data. The phantom
was filled with SPIONs (Micromod Partikeltechnologie
GmbH,

Rostock, Germany). And the distance between the
tubes was set to 5mm.

I11.1l. Experiments results

We applied DC_GAN to simulated and real data to evalu-
ate its performance.

I.11.1. Simulating experiments

We compared our proposed DC_GAN with the decon-
volution image on simulated images to analyze its per-
formance. We design two-tube phantoms with different
distances to evaluate the spatial resolution of the MPI.
The field of view is 20mmx20mm. Each tube has a di-
ameter of 1.2mm, and the gap between the two tubes is
1.4mm, 1.8mm, 2.2mm, 2.6mm and 3.0mm. The native
MPI and the reconstructed images using different meth-
ods are displayed in Fig. 2. The third and the fourth rows
show that the results generated by our method greatly
improved the spatial resolution compared with the de-
convolution. The normalized signal intensity profiles
are plotted from the red lines and showed in the last row.
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Figure 2: Simulated dual-tube experimental results for resolu-
tion enhancement.

Table 1: Evaluation results for the simulated experimental
data via different methods

Methods
Resolution | Deconvolution DC_GAN

PSNR | SSIM | PSNR | SSIM
1.0mm 12.818 | 0.069 15.87 0.71
1.4mm 12.204 | 0.066 | 14.934 | 0.691
1.8mm 11.415 | 0.058 | 14.322 | 0.671
2.2mm 10.86 0.055 | 14.312 | 0.654
2.6mm 10.428 | 0.057 | 14.651 0.64
3.0mm 9.94 0.055 14.85 | 0.621
3.4mm 9.443 0.049 | 14.897 | 0.601

The comparison of the quantitative evaluations is listed
in Table 1.

Furthermore, we used the MNIST phantoms which
were more complex than the resolution phantoms to
prove the effectiveness of our proposed method. The
results were shown in Fig. 3, which showed that our
method can achieve better performance compared with
the deconvolution method in improving the quality of
the final image.

In addition, to further verify the robustness to the
noise, we added white Gaussian noise to the native MPI
images. The visual results were displayed in Fig. 4, which
showed that our method gain a better performance com-
pared with the deconvolution method at the expense of
the added noise.

111.11.2. Phantom experimental results

Additionally, we scanned two-tube phantoms under
isotropic modes with a MPI scanner (MOMENTUM, Mag-
netic Insight, USA). Fig. 5 shows that the artefacts are
effectively removed using our method.
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Figure 3: Simulated MNIST experimental results.
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Figure 4: Simulated experimental results with the noise level
of 30dB via different methods.

IVV. Conclusions and discussion

We developed an unsupervised dual adversarial frame-
work with contrastive learning to improve the spatial res-
olution of native images in x-space MPI. The key idea is
to find the mapping between different image domains us-
ing unpaired data to translate the boundary features. We
replace the widely-used cycle-consistency constraint by
patch-wise contrastive constraint, which could help the
structure of the native MPI be retained. The simulation
and phantom experiments demonstrated the DC_GAN
achieves better performance compared to the deconvo-
lution.
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