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Abstract
Magnetic particle imaging (MPI) is a new, radiation-free medical imaging modality that relies on the non-linear
magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs) to reconstruct their concentration
distribution with high sensitivity and medical safety. Current quantification methods for region of interest (ROI) are
inadequate and are usually outlined manually or using deep learning methods. We propose two new models for
ROI selection based on machine learning, one is the K-means++-based threshold-inflated image segmentation
model and the other is the image segmentation model based on MPI simulation and SVM. We have developed an
accurate quantification of 2D MPI images and established the calibration curve to predict the corresponding iron
content based on the MPI image.

I. Introduction

Magnetic particle imaging (MPI) is a novel radiation-
free medical imaging modality that can directly image
the spatial concentration distribution of superparamag-
netic iron oxide nanoparticles (SPIONs) tracers [1]with
high sensitivity [2] and independent from tissue depth-
dependent characteristics. Compared to clinical mag-
netic resonance imaging (MRI), MPI has the advantage
of positive contrast imaging [3]. Preclinical studies have
demonstrated the great potential of MPI in biomedical
applications such as stem cell tracking [4], cancer imag-
ing [5], intestinal bleeding detection [6], lung imaging
[7][8], and stroke detection [9].

Currently we often outline the region of interest (ROI)
i.e., the region with tracer material in the MPI image man-
ually, which leads to low efficiency and the results are

subjectively affected by the operators. Deep learning al-
gorithms such as convolutional neural networks have
potential but have many limitations like requiring large
amounts of labeled data for training the neural network
[10]. However, machine learning algorithms such as un-
supervised learning algorithms based on clustering, can
be optimized for a wide range of data, and supervised
learning algorithms such as support vector machines
(SVM) show many unique advantages in solving small
sample, non-linear and high-dimensional pattern recog-
nition.

We propose two new models for ROI selection, the K-
means++-based threshold-inflated image segmentation
model and the image segmentation model based on MPI
simulation and SVM. To evaluate the effectiveness of
them for the quantitative analysis of 2D MPI images, two
experiments are designed in this work.
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Figure 1: (a) Calibration phantom, (b) phantom “5” and “3”, (c)
phantom “8” and “9”, (d) the MPI image of calibration phantom,
(e) the MPI image of phantom “5” and “3”, (f) the MPI image of
phantom “8” and “9”.

This work provides a mechanism that allows accurate
selection of ROI from 2D MPI images and subsequent
analysis of ROI to achieve prediction of the correspond-
ing iron content based on the MPI image.

II. Material and methods

II.I. 3D-Printed Phantom Preparation
and MPI Protocol

Five 3D-printed constructs were generated—a calibra-
tion phantom containing six small cubes, a “5”, a “3”, a
“8” and a “9” phantom. SPION solutions (synomag®-
D, Micromod) of various concentrations were prepared.
Six small cubes of the calibration phantom were filled
with six concentrations of tracer, 2.5 µg/µL, 2.0 µg/µL,
1.5 µg/µL, 1.0 µg/µL, 0.5 µg/µL, and 0.25 µg/µL, respec-
tively. Other phantoms were injected with tracer at a
concentration of 1 µg/µL. The total iron value (TIV) was
recorded for validating and comparing the prediction
of the proposed algorithms to the actual TIV injected
into the constructs. The parameters such as field of view
(FOV), gradient of selection field, excitation frequency,
and scanning trajectory were important for the imaging
quality. Based on the x-space reconstruction algorithm,
we acquired the simulated MPI images by setting the
scanning parameters consistent with the commercial
machine: a 4cm×6cm FOV, a 5.7 T/m selection field gra-
dient, a drive field strength of 20 mT peak amplitude and
a 45.0 kHz drive frequency. We set the diameter of the
particles for scanning to 50 nm and the environmental
temperature to 293 K. Finally, we obtained the simulated
images, which had a pixel resolution of 0.25 mm. Phan-
toms were scanned by MPI device MOMENTUM imager
(Magnetic Insight, Inc., Alameda, CA) using the default
scan mode, which had a moderate sensitivity, resolution
and acquisition time. The 3D printed phantoms and
their corresponding 2D MPI images are shown in Fig.1.

II.II. K-means++-based
Threshold-inflated Image
Segmentation Model

We propose a K-means++ based threshold-inflated im-
age segmentation algorithm to select the ROI of MPI im-
ages. The algorithm flow is as follows.

1. Setting a threshold value to segment the MPI image
and pixel values below this threshold are set to 0 and
pixel values above the threshold remain unchanged,
resulting in segmentation of the MPI foreground
and background images.

2. Clustering of pixel locations in the foreground MPI
image using the K-means++ algorithm [11], which
in this work uses the elbow rule to determine the k
value, resulting in k classes.

3. Finding the pixel point with the largest pixel value
in each cluster and using it as the starting point for
threshold inflation, the object of the threshold in-
flation operation is the original MPI image. This is
done by first setting a threshold and then visiting
the 4-neighbourhood pixel points of this pixel point,
adding them to the visited list if the pixel value is
above the threshold and leaving them unprocessed
if the pixel value is below the threshold.

4. Continuing the threshold inflation operation for
new pixel points added to the visited list until the
visited list no longer changes.

5. The pixel points in the visited list are merged and
the final segmented image is output.

II.III. Image Segmentation Model Based
on MPI simulation and SVM

We propose a new image segmentation model based
on the MPI simulation and SVM. We utilized a flexible
and easy-to-use MPI reconstruction framework (MPIRF)
[12], which integrates the x-space [13] and system matrix
methods for scan simulation and image reconstruction
and can simulate the working process of MPI scanners.
The trained SVM can classify each pixel in the image
to achieve ROI selection. The training dataset was pro-
duced using MPIRF. Handwritten digital images of 0-9 in
the MNIST handwriting dataset and a square image were
used as the phantom images, as shown in Fig.2(a)-(k).
Their corresponding MPI images are shown in Fig.2(l)-(v).
A sub-image of size 50 × 50 is intercepted in the center
of the MPI image of 0-9 and the upper left corner of the
MPI image of the small square as the training data set,
and the size of the training data set i.e., the number of
pixels is 27500.
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Figure 2: (a)-(k) The phantom images, (l)-(v) the correspond-
ing MPI images.

Figure 3: (a) The original image, (b) the ground truth, (c)
the gamma-corrected image, (d) foreground signals, (e) elbow
method graph indicating SSE (sum squares of error) per se-
lected k value, (f) clustering results, (g) segmented ROI ob-
tained using the K-means++ based threshold-inflated image
segmentation model.

III. Results and discussion

III.I. Calibration Curve Establishment

In this experiment, the calibration curve was established.
Fig.3 shows the result of the K-means++based threshold-
inflated image segmentation model. Each color indicates
a class in Fig.3(f)&(g). The final segmented ROI contains
four parts, and two parts were lost during the image pro-
cessing. The MPI signal here means the pixel value in
the MPI image.

The unit pixel MPI signal and unit pixel iron concen-
tration are calculated for the six phantom regions in the
ground truth and then linearly regressed in least squares.
The result are shown in Fig.4. The linear relationship is
y=0.0001x+0.0015, R2=0.9952. This linear relationship
was used to calculate the iron content and MPI signal in
reconstructed signal intensity of the four ROIs separately.
Linear regression was performed on the MPI signal and
the iron content, and the result is shown in Fig.5. The
calibration curve is y=0.0001x+0.0479, R2=0.9999.

Figure 4: The linear relationship between MPI signal and iron
concentration.

Figure 5: Calibration curve.

III.II. Accuracy Verification of
Calibration Curve

The K-means++-based threshold-inflated image seg-
mentation model is first applied to MPI images of phan-
tom “5”, “3”, “8” and “9”, and the result can be seen in
Fig.6(b)&(e). Then the image segmentation model based
on MPI simulation and SVM is applied, and the seg-
mented ROI shown in Fig.6(c)&(f). The total MPI signals
of ROI and the corresponding TIV are shown in Table 1.
The first three relative errors are 0.04%, 0.02% and 0.26%
indicating that the accuracy of the calibration curve is
high, and the model segmented the ROI well. The worst
result for phantom "9" is just a segmentation error of the
phantom, which can always happen. The other phan-
toms are quite well separated and the predicted TIV are
quite accurate.

IV. Conclusions
We propose two new models for ROI selection, the K-
means++-based threshold-inflated image segmentation
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Figure 6: (a) & (d) The original MPI image, (b) & (e) the cor-
responding initial segmented ROI, (c) & (f) the corresponding
final segmented ROI obtained using the image segmentation
model based on MPI simulation and SVM.

Table 1: TIV information.

phantom actual TIV
(µg)

predicted TIV
(µg)

relative
error

5 166.18 166.10640 0.04%
3 190.34 190.38518 0.02%
8 244.98 245.62478 0.26%
9 165.54 127.97111 22.70%

model and the image segmentation model based on MPI
simulation and SVM. Experiments have shown that our
methods can segment the MPI images accurately and we
have completed quantification by obtaining the calibra-
tion curve so that the corresponding iron content can be
known from the MPI image.
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