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Abstract
MPI offers a huge potential for cardiovascular imaging and interventional guidance. Especially, stent lumen imaging
is an advantageous feature of MPI. Due to the presence of oscillating magnetic fields some metallic objects show
temperature increase during MPI scans. Regarding first available human size MPI scanners and thus, future clinical
application, the extent of stent heating becomes an important safety issue which could limit the application of MPI
for specific patient groups. In this work, the temperature increase of stents with large diameters was investigated to
determine the extent of stent heating in MPI.

I. Introduction

Magnetic Particle Imaging (MPI) is a tomographic modal-
ity which offers a wide range of promising applications
in the field of cardiovascular imaging and the guidance
of endovascular interventions [1]–[3]. In the last decade,
several proof of concept studies illustrated this potential
and especially the visualization of endovascular stents
emerged as a unique feature of MPI in comparison to
established modalities like CT and MRI [4, 5].

Due to the use of oscillating magnetic fields in MPI
scanners, heating of metallic objects is an important
safety issue [6]. First in vitro studies showed a clinically
mostly irrelevant heating behavior of stents, but identi-
fied the stent diameter as an influencing factor regarding
stent heating in MPI [7, 8].

MPI is currently holding a preclinical status but first
human scale scanners have become available recently [9,
10]. In addition to the perspective of direct stent lumen vi-
sualization, brain perfusion can be displayed using MPI.

In this regard, the potential extent of stent heating be-
comes an important safety issue which might limit MPI’s
application for specific patient groups.

In this study, we investigated metallic stents with
large diameters to determine the extent of stent heat-
ing in MPI.

II. Material and methods

Five different commercial endovascular stents made
from stainless steel, nitinol or cobalt-chromium (Co-Cr)
were investigated (Table 1). The stents had diameters
between 12 mm and 31 mm, lengths of 38 mm to 100 mm
and were implanted in polyvinyl-chloride tubes with cor-
responding diameters.

The temperature measurements during the 431 sec-
onds MPI scans were performed in accordance to already
published protocols [7, 8] by using a fiber-optic ther-
mometer (FTX-300-LUX+, Osensa, Coquitlam, Canada).
In accordance to initially performed thermographies, the
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Table 1: Stent details

Stent type
(Manufacturer/

name)

Length
(mm)

Ø
(mm)

Material

BARD/
Lifestream

38 12
Stainless

steel
EV3/

Protege GPS
80 14 Nitinol

Boston
Scientific/

Wallstent-Uni
Endoprothesis

60 16 Nitinol

Bentley/BeGraft 48 20 Co-Cr
Gore/TAG 100 31 Nitinol

temperature probes were fixed directly at the stent struts
in the middle section of the stents (with exception of
Gore/TAG) and as a reference at the bottom of a nonmag-
netic phantom holder.

The experiments were performed in a preclinical MPI
scanner (Bruker-Biospin, Ettlingen, Germany) with the
following measurement parameters: selection field gra-
dients: 1.25 T/m in x- and y-direction and 2.5 T/m in
z-direction; drive field strength: 12 mT in each direction
and drive field frequencies: 24.510 kHz, 26.042 kHz, and
25.252 kHz in x-, y-, and z-direction, respectively.

The temperature differences were computed by sub-
tracting the temperatures after and before the MPI scans.
The measured reference temperatures were subtracted
from the stents’ temperatures. A temperature increase of
>0.1 K was defined as heating, based on the inaccuracy
of the measurement setup.

III. Results and discussion

All tested stents revealed a temperature increase during
the MPI sequences (Figure 1). The minimum was 8 K
(BARD/Lifestream) and the maximum 53.1 K (Gore/TAG).
The Gore/TAG stent graft only showed slight heating of
0.5 K, when measured at the center of the stent, but the
highest increase of 53.1 K was observed at the stent’s end.
The measured temperature differences were increasing
with growing diameter. Pearson’s correlation coefficient
(square root of temperature difference vs. stent diame-
ter) depicted this relation with a value of R=0.97 (with
exception of Gore/TAG in the middle section.).

This study shows that the amount of stent heating dur-
ing MPI scans can reach more than 50 K. Furthermore,
this work confirms the diameter of stents to be an impor-
tant influencing factor regarding heating in MPI. Despite
potential significant cooling effects of the blood flow [11],
which were not addressed in this study, the detected tem-
perature differences in this work remain potentially life

Figure 1: Temperature differences of the stents after 431s MPI
scans. The results are sorted by the stent diameter (increasing
from left to right).

threatening. Since a temperature increase of 6 K already
has antiproliferative effects on the muscle cells of the
vessel wall [12], the amount of heating observed in this
study is expected to cause burn necroses with the danger
of severe bleedings. Consequently, MPI examinations of
patients carrying stents with such large diameters (aortic
stents) should be avoided, at least when the field of view
is covering the stent.

To guarantee MPI access for stent patients, it is nec-
essary to take MPI compatibility into account during the
development of future stents. Previous studies showed
that the interruption of the stents’ conductor loops in
radial and longitudinal direction reduces the amount of
heating drastically [7, 8]. Hence, such approaches might
be a basis for the development of MPI compatible stent
designs.

This study has several limitations: The heating behav-
ior was investigated in vitro under static conditions. To
estimate the cooling effect of the blood circulation, a flow
study is needed. Furthermore, only a small number of
stents was tested in this work. With the given perspective
of human MPI, every medical implant should be tested
for its safe usage in the respective MPI setup before the
examination of patients.

IV. Conclusions

This study shows that metallic stents with large diameters
may cause potentially harmful temperature increases
during MPI.
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