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Abstract
In magnetic particle imaging (MPI), harmonic magnetization signals detected from magnetic nanoparticles (MNPs)
are used to image the spatial distribution of the MNPs. The strength of the harmonic signals is directly related to the
sensitivity of the MPI system. In this study, we used numerical simulations based on the Fokker-Planck equation to
explore the effect of the core size distribution of an immobilized MNP sample on the harmonic signals. We assumed
an anisotropy value of 5 kJ/m3 and a uniform volume-weighted core size distribution of MNPs ranging from 17.4 to
37.6 nm to simulate a typical MNPs sample. First, we show that the strength of the harmonic signals of the MNP
sample were much lower than calculated from the scalar summation of the harmonic signals generated from each
MNP in the sample. For example, the strength of the 9th harmonic signal decreased to one-third. This indicates that
about 67% of the 9th harmonic signals generated from each MNP are mutually cancelled. We then show that the
phase lag of the magnetization due to a finite Néel relaxation time caused lower harmonic magnetization signals of
the MNP sample when the core size was distributed. These results indicate that an MNP sample with a narrow size
distribution and small anisotropy energy would effectively improve the sensitivity of the MPI system.

I. Introduction

Magnetic particle imaging (MPI) is a new modality for
imaging the spatial distribution of magnetic nanoparti-
cles (MNPs), and can be used for in-vivo diagnostic appli-
cations [1]. In MPI, nonlinear magnetization signals from
MNPs under an alternating current (AC) excitation field
are detected. Therefore, the performance of MPI strongly
depends on the properties of the AC magnetization of
the MNPs [2, 3].

The strength of the harmonic signals caused by the
nonlinearity of the magnetization is strongly dependent
on the core size of the MNP. Therefore, a study is neces-
sary to quantify the dependence of the AC magnetiza-

tion on the core size of the MNP in order to improve
the performance of MPI. Ferguson et al. studied the
optimal core size of magnetite MNPs for MPI [4]. They
modeled the AC magnetization of MNPs using a mod-
ified Langevin function that included the effect of the
relaxation time. Ludwig et al. evaluated the MPI tracer’s
core size, hydrodynamic size, and magnetic anisotropy,
which are important physical parameters to determine
the AC magnetization of MNPs, using AC susceptometry
(ACS), magnetorelaxometry (MRX), and magnetic parti-
cle spectroscopy (MPS) [5]. Eberbeck et al. introduced a
bimodal lognormal distribution of effective core size for
Resovist MNPs and showed that the harmonic magneti-
zation spectrum was generated from the larger fraction,
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which consisted of the agglomerate of elementary par-
ticles [6]. Based on the findings in [6], a magnetically
fractionated Ferucarbotran NMP sample was character-
ized for MPI [7]. The sample included a large portion of
particles that are responsible for the harmonic spectrum.
As a result, its harmonic spectrum increased by a factor
of 2.5 compared with the original sample, indicating that
the harmonic spectrum is significantly affected by the
distribution of core sizes in a practical MNP sample.

In this study, we use numerical simulations based on
the Fokker-Planck equation to study the effect of the core
size distribution of an immobilized MNP sample on the
harmonic signals. We first present numerical simulation
results for an MNP sample with a relatively large core size
distribution. We quantify how the core size distribution
of the MNP sample affects the harmonic magnetization.
It is shown that the phase lag of the magnetization is dif-
ferent for each MNP in the sample because of the core
size dependence of the Néel relaxation time. The distri-
bution of the phase lag between the MNPs causes the
low harmonic magnetization signals of the MNP sample.
Next, we perform a numerical simulation for an MNP
sample with a narrow core size distribution. Compar-
ing the results obtained for the two cases, we quantify
the effect of the core size distribution on the harmonic
magnetization.

II. Material and Methods

II.I. Numerical Simulations
Micro-magnetic simulations are usually used to study
the dynamic behavior of MNPs [8, 9]. The behavior of
MNPs obeying the Néel mechanism can be described by
the Fokker–Planck equation [10]:
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Here, τN 0 is the characteristic Néel relaxation time,
σ = K Vc /kB T is the anisotropy energy barrier normal-
ized by the thermal energy kB T , K is the anisotropy con-
stant, Vc is the core volume of the MNP, θ and φ are
polar and azimuthal angles, respectively, W (θ ,φ, t ) is
the distribution function of magnetic moment m , and
α is a dimensionless damping factor. In the numerical
simulation, τN 0 = 10−9 and α was assumed to be suffi-
ciently large to neglect the contribution from the pre-
cession term in Eq. (1), i.e., numerical calculations were
performed for the high damping limit [11].

When the easy axis of the MNP is defined to be the z -
direction and an AC excitation field H (t ) =Ha c cos 2π f t
is applied in the x z -plane with an angle β relative to the
z -axis, the potential energy of the MNP is given by

E =−µ0Ms Vc H
�

sinβ sinθ cosφ+ cosβ cosθ
�

. . .

· · ·+K Vc sin2θ .
(2)

Here, Ms =m/Vc is the saturation magnetization. In
the numerical simulation, we set Ms = 360 kA/m, K =
5 kJ/m3, and T = 300 K.

By using the matrix continued fraction technique [12],
we can calculate the k -th harmonic of the complex mag-
netization in the direction of the AC excitation field, Mkβ .
Details of the simulation procedure were published else-
where [13]. For the case when the easy axes of the MNPs
are randomly oriented, the k -th harmonic of the complex
magnetization of MNPs with core size dc , designated by
Mk (dc ), was calculated as follows:

Mk (dc ) =
M
∑

j=1

N
∑

i=1

Mkβ (βi )sinβi∆β , (3)

where βi = π(i −0.5)/2N . In the numerical simulation,
we set N = 90 and∆β =π/180.

II.II. Core Size Distribution
When a core size distribution exists in the MNP sample,
the total k -th harmonic of the complex magnetization,
〈Mk 〉, is given by the following equation

〈Mk 〉=
∑

i f (dc i )Vc i Mk (dc i )∆dc i
∑

i f (dc i )Vc i∆dc i
. (4)

Here, Vc i is the core volume of the MNP, f (dc i ) is the
number of MNPs within distance ∆dc i around dc i . In
the simulation, for simplicity, we assumed a uniform
volume-weighted core size distribution. Namely, we as-
sume the value of f (dc i )Vc i to be constant, ranging from
dc min to dc max. Here, dc min and dc max are the minimum
and maximum values of the core size, respectively.

We obtain the real 〈Mk 〉′ and imaginary 〈Mk 〉′′ parts
and the phase lagφk of the k -th harmonic magnetization
as follows:

〈Mk 〉= 〈Mk 〉′− j 〈Mk 〉′′ , (5)

φk = tan−1(〈Mk 〉′′/〈Mk 〉′) +nπ , (6)

where the first term of Eq. (6) is defined in the region
[−π/2,π/2], and n is integer: the value of n = 0 is usually
selected.

III. Results and Discussion
We first performed a numerical simulation for a case
of dc min = 17.4 nm and dc max = 37.6 nm. These values
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were chosen based on the core size distribution of a prac-
tical MNP sample (Resovist, FUJIFILM Pharma). Us-
ing a relationship of m = MS

π
6 d 3

c , the minimum and
maximum values of magnetic moment are calculated as
mmin = 10−18 Am2 and mmax = 10−17 Am2, respectively.

The filled circles in Fig. 1 represent the amplitude
of the harmonic signals of the MNP sample when an
AC excitation field with amplitude µ0Ha c = 20 mT and
frequency f = 20 kHz is applied. As can be seen, the am-
plitude of the harmonic magnetization decreases mono-
tonically with increasing harmonics number k . For com-
parison, we calculated the scalar summation of the am-
plitude of the harmonic magnetization signal generated
from each MNP, 〈Mk 〉s s . We note that Mk (dc i ) in Eq. (4)
is a complex value. The scalar summation is given by:

〈Mk 〉s s =

∑

i f (dc i )Vc i |Mk (dc i )|∆dc i
∑

i f (dc i )Vc i∆dc i
, (7)

where |Mk (dc i )| is the amplitude of the k -th harmonic
magnetization of the MNP with core size dc i .

As shown in Fig. 1, the amplitude of the harmonic
signal of the MNP sample (filled circles) is much lower
than that calculated from the scalar summation of the
amplitude of the harmonic signals generated from each
MNP (open circles). For example, the strength of the
9th harmonic signal decreases to one-third. This indi-
cates that about 67% of the 9th harmonic magnetization
signals from each MNP are mutually cancelled.

Figure 1: Amplitude of the harmonic magnetization spectrum
when an AC excitation field with amplitude µ0Ha c = 20 mT
and frequency f = 20 kHz was applied. A uniform volume-
weighted core size distribution ranging from 17.4 nm to 37.6 nm
was assumed. Filled circles represent the harmonic spectrum
calculated using Eq. (4). Open circles represent the scalar sum-
mation of the amplitude of harmonic signals generated from
each MNP calculated using Eq. (7).

In order to determine the origin of the decrease in the
strength of the harmonic magnetization, we show the AC
magnetization curves for dc = 20 nm and dc = 35 nm

in Fig. 2. As can be seen, the AC magnetization for
dc = 20 nm occurs without a phase lag, while that for
dc = 35 nm occurs with a large phase lag. This differ-
ence can be explained by the Néel relaxation time. Using
an analytical expression, Brown’s field-dependent Néel
relaxation time is given by [10]

τN (ξ,σ) =
p
π

2
p
σ
τN 0

e σ(1+h 2)

(1−h 2)(coshξ−h sinhξ)
(8)

with h = ξ/2σ and ξ = µ0Ha c m/
p

2kB T , the Néel re-
laxation time for dc = 20 nm is calculated as 7.3 ·10−9 s.
Since this value is much shorter than the change of the
AC excitation field of 1

2π f = 8 ·10−6 s, the phase lag is neg-
ligible in this case. On the other hand, the Néel relaxation
time for dc = 35 nm is calculated as 6.5 · 10−7 s. In this
case, the relaxation time cannot be neglected, and as a
result, the AC magnetization for dc = 35 nm occurs with
a large hysteresis area and a phase lag.

Figure 2: AC magnetizations of MNPs with dc = 20 nm and
dc = 20 nm, when an AC excitation field with amplitude
µ0Ha c = 20 mT and frequency f = 20 kHz was applied.

Figure 3 shows the dependence of the phase lag of
the harmonic magnetization,φk , on the core size dc . As
shown,φk increases with increasing dc , and its depen-
dence becomes stronger for higher harmonics number
k . We note that the value of n in Eq. (6) was chosen so
as to obtain a smooth dc vs. φk curve. For example, we
first selected n = 0 for small dc values. The value of φk

increased with increasing dc , and reached to π/2. Then,
we selected n = 1 for the following dc values. If we keep
n = 0 for all values, dc vs. φk curve becomes a saw-tooth
like curve.

We note that Mk (dc i ) in Eq. (4) is a complex value.
When a phase lag exists, the real and imaginary parts of
Mk (dc i ) become positive or negative depending on the
value ofφk . Since the value ofφk changes with the core
size as shown in Fig. 3, the real and imaginary parts of
Mk (dc i ) depend on the core size. In Fig. 4, the depen-
dence of the real M ′

9 and imaginary M ′′
9 parts of the 9th
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Figure 3: Dependence of the phase lag of the harmonic mag-
netization on the core size.

harmonic magnetization on the core size are shown. As
expected from the dc vs. φk curve shown in Fig. 3, both
M ′

9 and M ′′
9 become positive or negative depending on

the core size. This means that the harmonic magnetiza-
tion signals from each MNP are mutually cancelled when
the core size is distributed in the MNP sample. This is
the reason for the degradation of the harmonic spectra
of the MNP sample when the core size is distributed.

We note that experimental results of harmonic spec-
tra of Resovist sample agreed well with the numerical
simulation when the actual distribution of core size was
taken into account [13].

Figure 4: Dependence of the real M ′
9 and imaginary M ′′

9 parts
of the 9th harmonic magnetization on the core size.

We also note that the dc vs. φk curve shown in Fig. 3
depends on the value of the anisotropy energy constant
K ; the value ofφk decreases with decreasing K . There-
fore, an MNP with a small value of K can be used to
prevent the degradation of the harmonic spectra due to
core size distribution.

Finally, we performed a numerical simulation for a
case with dc min = 25 nm and dc max = 30 nm. In this case,
the range of the core size distribution was one-quarter
the previous case, while the mean core size remained
the same. In Fig. 5, comparison of the amplitude of the
harmonic signals between the two cases is shown. The
open squares in Fig. 5 represent an MNP sample with
dc min = 25 nm and dc max = 30 nm, while the filled cir-
cles represent an MNP sample with dc max = 17.4 nm and
dc max = 37.6 nm. As shown, the strength of the harmonic
magnetization is larger for the MNP sample with a nar-
row size distribution. This is because the phase lag φk

remains in a narrow range, as can be seen in Fig. 3. For
example, a 3.2-fold increase was observed in the 9th har-
monic magnetization from the MNP sample with a nar-
row core size distribution compared with the MNP sam-
ple with a wider core size distribution. This result indi-
cates that an MNP sample with a narrow size distribution
improves the sensitivity of the MPI system.

Figure 5: Amplitude of the harmonic magnetization spectrum
when an AC excitation field with amplitude µ0Ha c = 20 mT and
frequency f = 20 kHz was applied. Open squares and filled cir-
cles are for MNP samples with a uniform volume-weighted core
size distribution ranging from 25 to 30 nm, and from 17.4 nm
to 37.6 nm, respectively.

IV. Conclusion

We used numerical simulations based on the Fokker-
Planck equation to explore the effect of the core size
distribution of an immobilized MNP sample on the har-
monic magnetization signals. First, we showed that the
strength of the harmonic signals of the MNP sample were
much lower than calculated from the scalar summation
of the harmonic signals generated from each MNP in the
sample. This degradation indicated that the harmonic
signals from each MNP were mutually cancelled, and was
caused by the difference in the phase lag between each
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MNP. It was also shown that the amplitude of the har-
monic signals increased when the core size distribution
was narrow. These results indicate that an MNP sample
with a narrow size distribution and small anisotropy en-
ergy would effectively improve the sensitivity of the MPI
system.
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