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Abstract
In this work, it is demonstrated how an extended equilibrium magnetization model that allows modeling of uniaxial
anisotropy for the nanoparticles can be integrated into the system function component model for magnetic particle
imaging with a field-free point moving along a Lissajous trajectory. In previous works, the particle model with
anisotropy has been shown to describe the measured system function better than the classical Langevin model
of paramagnetism. However, the question arises how this model relates to the observed tensor products of the
Chebyshev polynomials in the Fourier series components of the system function. Static uniaxial anisotropy is
assumed in this work. It is shown that the structure compared to the isotropic solution can be preserved in this
case.

I. Introduction

Magnetic particle imaging (MPI) measures the spatial dis-
tribution of superparamagnetic iron oxide nanoparticles
(SPIOs) in a field of view (FOV). Since SPIOs have a non-
linear magnetization characteristic, spatio-temporally
varying magnetic fields can be used to simultaneously
measure the spatio-temporal distribution and concen-
tration of SPIOs. For this purpose, different magnetic
fields are applied to create a so-called field-free point
(FFP) and move it along a trajectory. As a starting point
for a mathematical model of the system function, the
highly simplified Langevin model of paramagnetism was
used [1]. This model is used in both Cartesian-like tra-
jectory based MPI [2] and the Lissajous FFP-trajectory
based MPI [3]. However, for multidimensional Lissajous
FFP-trajectory based MPI this model is still too simple
for good model based image reconstructions. In higher-
dimensional MPI based on Lissajous FFP-trajectories,

a relationship to tensor products of weighted Cheby-
shev polynomials (CPs) has been found in the Fourier
series components of the system function, called system
function components [3, 4]. Unfortunately, the model in
[4] uses the oversimplified Langevin theory of paramag-
netism. In contrast, more sophisticated Néel relaxation
models have recently been proposed on basis of Fokker-
Planck equations, one of these magnetization models
shows higher similarity to measured system functions
than the classical Langevin model [5]. From the Fokker-
Planck equations (FPE), the equilibrium model (EQM)
was derived in a next step [6, 7]. The advanced equi-
librium model introduces a particle anisotropy but ne-
glects the relaxation effects themselves. Nevertheless,
the model seems to be promising for model based MPI.
In this work it will be shown that the new equilibrium
model from [6, 7] can be easily incorporated into the CP-
based model in [4] if the additional assumption is made
that the uniaxial easy axis is static in time.
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II. Methods and materials
The voltage signal u P

` :R→R induced by particle distri-
bution c :R3→R+ in the `-th receive coil is commonly
described mathematically by

u P
` (t ) =−µ0

d

dt

∫

R3

c (x )p T
` m̄ (x , t ) dx , (1)

where m̄ :R3×R→R3 denotes the mean magnetic mo-
ment vector (MMMV) of the SPIOs, p` ∈R3 is a constant
coil sensitivity, and µ0 is the vacuum permeability.

The MMMV in the Langevin model is modeled by

m̄ (x , t ) =m0L (βH (x , t )), (2)

where L : R3 → R3 is the three-dimensional Langevin

function with L (ξ) = L (‖ξ‖2)
ξ
‖ξ‖2

, L (ξ) = coth(ξ)− 1
ξ ,

H :R3×R→R3 is the applied magnetic field, which is a
superposition of the so-called periodic drive field (DF)
H D(t ) and the static selection field H S(x )with H (x , t ) =
H S(x ) +H D(t ), and m0,β ∈R are parameters.

In the equilibrium model with an uniaxial anisotropy
the MMMV is described by [6, 7]

m̄ (x , t ) =m0

∫

S2

m pN(m ,βH ,αKanis
, n ) dm

︸ ︷︷ ︸

=E (βH ,αKanis
,n )

=m0E (βH ,αKanis
, n ),

(3)

where pN(m ,βH ,αKanis
, n ) = 1

Z eβH T m+αKanis
(n T m )2 is the

probability density function (PDF) with respect to m ∈ S2,
S2 denotes the surface of the unit sphere, n : R3 → S2

denotes the easy axis of the particle anisotropy, αKanis
:

R3 → R denotes the strength of the anisotropy, and
Z (βH ,αKanis

, n ) normalizes pN(m ,βH ,αKanis
) such that

it is a PDF with respect to m . It is assumed that n (x ) and
αKanis

(x ) are static in time, besides, forαKanis
(x ) = 0 it holds

that (3) is equivalent to (2).
The system function of MPI s`(x , t ) is given by all

terms in (1) that are independent of c (x ):

s`(x , t ) =−µ0p T
`

∂ m̄ (x , t )
∂ t

. (4)

For the Langevin model with a linear gradient field
(H S(x ) =G x , G ∈R3×3 ), the system function is expressed
by

s`(x , t ) =M T
`

∂

∂ t

�

L
�

βG (x FFP (t )−x )
��

(5)

with the position of the FFP x FFP (t ) = −G −1H D(t ) and
M` =µ0m0p`.

Without loss of generality, we restrict ourselves here
to the 2D excitation case, for which it was shown in [4]
that the system function components, i.e., the Fourier
series coefficients of (5), can be represented by

sk`(x ) = iωk M T
`

∫

R3

�

∂ 2

∂ z1∂ z2
L
�

βG z
�

�

z=x−y
bk (y ) dy , (6)

Table 1: The physical parameters in the simulated models.

symbol value unit
Magnetic constant µ0 4π×10−7 H m−1

Boltzmann constant kB 1.38064852×10−23 J K−1

Particle diameter D 25×10−9 m
Particle volume VC

π
6 D 3 m3

Particle temperature TB 300 K
Sat. magnetization MS 474000 J m−3 T−1

Magnetic anisotropy gradient gKanis
1250 J m−3

m0 VC MS J T−1

β
µ0VC MS

kB TB
mA−1

where k ∈Z, bk (x ) is related to a series of tensor products
of CPs of second kind, ωk =

2πk
TD

, and TD is the period
length of x FFP (t ).

For the MMMV in (3), the corresponding form of (5)
is

s`(x , t ) =M T
`

∂

∂ t

�

E
�

βG (x FFP (t )−x ) ,αKanis
(x ), n (x )

��

.

(7)
Both (5) and (7) are similar in their mathematical

structure, therefore the solution for the system function
components will be

sk`(x ) = iωk M T
`

∫

R3

�

∂ 2

∂ z1∂ z2
E
�

βG z ,αKanis
(x ), n (x )

�

�

z=x−y

· bk (y ) dy .
(8)

Note that this convolution integral represents a spatial
convolution with a spatially varying kernel.

III. Experiments
In the numerical simulation, the proposed model B3 in

[5] is used, where the easy axis n (x ) = H S(x )
‖H S(x )‖2

is aligned at
the selection field and the anisotropy strength is spatially

varying with αKanis
(x ) =

gKanis
VC

kB TB

‖H S (x )‖2
maxx∈Ω ‖H S(x )‖2

.
For the experiments, the system function is numeri-

cally simulated by discretizing (7) in the variables t and
x , and then the system function components are approx-
imated using the discrete Fourier transform (DFT). This
is used as the ground-truth system function component
s g
`k (x n ), where x n with n = 1, 2, . . . , Npixel denotes the spa-

tially uniform sampling position. For the system function
component model (8), we discretized the convolution
integral and perform the discrete convolution, result-
ing in s a

`k (x n ). The SPIOs parameter are listed in the Ta-
ble 1. For the scanner simulation, a two-dimensional
FFP trajectory was simulated with the frequency ratio
fx / fy = 17/16 and a repetition time TD = 652.8µs, cov-
ering a DF-FOV range of 24 mm× 24 mm. The system
function was sampled on an overscan region of size
65 mm×65 mm discretized to 121×121 pixels. One pe-
riod of the FFP is sampled at 16000 sample points in
time. The formal series bk (y ) is truncated after [4] to 121
terms. Each weighted CP is sampled with an oversam-
pling factor of 16, followed by a lowpass filtering and
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Figure 1: Upper Row: The relative numerical error ε`k and the energy of the ground-truth system function component Eng`k .
Lower Row: The SSIM between the ground-truth system function component and the system function component by (8). (a)
Result with respect to the first component. (b) Result with respect to the second component.

downsampling with a factor of 16 to avoid spatial alias-
ing, then the lowpass filtered CPs are convolved with the
magnetization model. Afterwards, the FOV is again re-
duced to the DF-FOV to avoid boundary artifacts due to
the spatially limited convolution. The similarity of both
system function components is compared by the relative
numerical error,

ε`k =
1

Npixel

Npixel
∑

n=1

�

�

�

s g
`k (x n )

maxm (|s g
`k (x m )|) −

s a
`k (x n )

maxm (|s a
`k (x m )|)

�

�

�

2
,

the normalized energy for the ground-truth system func-
tion components,

Eng`k =
∑Npixel

n=1 |s g
`k (x n )|2

maxm∈Z
�

∑Npixel
n=1 |s g

`m (x n )|2
� ,

and the structural similarity index measure (SSIM) [8]
using the Matlab built-in function by

SSIM`k = ssim
��

�s a
`k (x n )

�

� ,
�

�s g
`k (x n )

�

�

�

.

IV. Results and discussion
In Fig. 1 (upper row) it can be seen that the relative nu-
merical error ε`k between the ground-truth system func-
tion components and the function calculated with (8)
is always smaller than 20dB in the first 500 frequency
components. In addition, one can see that the relative
numerical error is high when the normalized energy is
quite low and vice versa. In tendency, the normalized
energy of the s g

`k (x n ) decreases with increasing values for

k . Additionally, oscillatory behavior is observed, where
values k with locally large energy correspond to a low
mixing order (|mx |, |my |) and vice versa [3]. The mixing
orders correspond to the lowest order tensor product of
CPs and are related to the spatial structure of the system
function components [3, 4]. In the lower row of Fig. 1, one
can observe that the SSIM is always larger than 0.92 for
all k . This indicates that the structural patterns between
|s g
`k (x n )| and |s a

`k (x n )| are highly correlated. For larger val-
ues of k , a slightly decreasing SSIM can be detected. For
pure multiples of the frequency dividers a slight system-
atic degradation of the SSIM can be observed. In such
cases, the mixing factor of one of the coefficients |mx | or
|my | is zero and therefore the convolution is no longer
performed with a spatially bounded CP of second kind
[4, Theorem 6.1.], leading to a truncation error. The low-
energy frequency components correspond to weighted
high-order CPs, but they oscillate strongly, therefore, for
a fixed spatial discretization of the convolution integral
in (8), the relative numerical error is expected to increase.
However, in real-world systems the structural patterns of
the low-energy frequency components have usually dis-
appeared in the noisy scanner background. Both receive
paths (see Figs. 1 (a) and (b)) show the same behavior. In
Fig. 1., the relative numerical error is small and SSIM is
high for both receiving paths in the tested scenario, indi-
cating that both models are approximately equivalent in
(7) and (8).

The model used in this work, i.e. (3) with model B3
from [5], has its motivation in the observation that the
model better describes the spatial structure of a system
matrix than the model based on the classical Langevin
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function, even though it is pointed out in [5] that the
model is an approximate model rather than a physical
model. In the work [7] the situation was systematically
studied in which the FPE model and EQM are approxi-
mately equivalent. Considering the parameters in Table
1 and comparing them with the results in [7, Table 1],
the EQM should match well with the model in [5, B3].
Concerning the assumption of a time-invariant easy axis
n (x ) and an anisotropy strength αKanis

(x ) in (8), the time-
invariant model could be justified under certain circum-
stances. Exemplary, there are medical scenarios conceiv-
able in which medical instruments could be coated with
immobilized particles that can additionally have a fixed,
oriented easy axis. Such approach would be useful to
determine the orientation and position of medical in-
struments such as catheters, stens, etc. during an MPI
measurement [9, 10].

In the extended EQM, the actual relaxation is not in-
cluded, but simple relaxation models could be included.
Relaxation effects, which are caused by spatio-temporal
effects, however, are not to be considered without further
steps in (8). All models in this work are based on a time-
invariant SPIO distribution c (x ), but SPIOs are ferrofluids
that can be spatially deformed by time-varying magnetic
fields, so in practice c (x , t ) holds to some extent. For-
tunately, one would expect the influence to be periodic
in the mean as well, as long as the SPIO distribution is
not completely free to move in the medium and one has
reached a steady-state in the MPI measurement. How-
ever, if the SPIO distribution is subject to other diffusion
processes, e.g. in blood flow, the model (8) is inaccurate
and a reconstruction algorithm would lead to motion
artifacts. How to deal with such inaccuracies is investi-
gated in [11]. It should be mentioned that the simulation
of (8) is computationally much more demanding than
the simulation via (7) followed by a DFT. The advantage
of the expression (8) over (7) is that it directly represents
the spatial structure of the system function components,
which might be helpful in a parameter identification task
or when trying to find good models for n (x ) and αKanis

(x ).

V. Conclusion
We have shown that it is possible to introduce into the
mathematical model in [4] a more sophisticated magne-
tization model that allows spatially varying but temporal
invariant SPIO anisotropies to be modeled. Exemplarily,
it is demonstrated that the structural pattern is a result of
the chosen FFP trajectory interacting with the magnetiza-
tion model. Although these results seem to be of limited
value, they show that CPs play a role in more complex

models and probably contribute to a better mathemati-
cal understanding of MPI. Yet it also seems possible to
combine spatially varying convolution with the direct
reconstruction model in [12] for the deconvolution step.
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