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Abstract
Recently, an approach was presented that allows a direct and fast image reconstruction without the use of a system
matrix for Lissajous trajectories of the so called field free point. The method is based on weighting frequency
components of the measured voltage signals and additional factors with Chebychev polynomials of the second
kind, resulting in reconstructions of the convolved spatial distribution of magnetic nanoparticles. In order to
obtain meaningful images, these reconstructions have to be deconvolved afterwards. For this purpose, different
methods have already been proposed. In this work, a U-shaped neural network is used for the deconvolution. The
network was trained and tested on simulated data of blood vessel like structures. The proposed model outperforms
conventional methods and improves the image quality of the reconstructions.

I. Introduction

Magnetic particle imaging (MPI) is a non-invasive tomo-
graphic medical imaging modality. Superparamagnetic
nanoparticle tracers (SPIO) are directly detected within
biological fluids, such as blood, by measuring the voltage
induced through the magnetization changes of the mag-
netic nanoparticle distribution [1]. Often, a measured
system function describing the relationship between the
received signal and the nanoparticle distribution is used
for image reconstruction.
A recently presented method in [2] proposed a fast di-
rect reconstruction of two- and three-dimensional SPIO
distributions. The method weights frequency compo-
nents of the voltage signals with Chebyshev polynomials
of second kind, followed by a deconvolution step. Except
for the estimation of the transfer function, the method
does not need a system matrix, but has drawbacks regard-
ing the image quality, as the deconvolution step could
introduce noise-dependent image artifacts in the recon-
struction results.

For this reason, in this work a neural network model
based on a U-Net architecture is proposed to perform
the deconvolution step. The presented network is eval-
uated on a data set consisting of images of simulated
blood vessel like structures and compared with the con-
ventional deconvolution methods from [2].

II. Methods and materials

The direct Chebychev polynomial based reconstruction
method proposed in [2] is derived from the two- and
three-dimensional system function in Fourier space for
the Langevin model of paramagnetism with Lissajous-
type excitation patterns. Due to space constraints,
we will only briefly introduce the method for the two-
dimensional case with an x- and y-coil in this work and
refer to [2] for a more detailed description.
The two-dimensional case can be shortly described in
few steps. First, the frequency components ûi k of Fourier
transformed voltage signals with i ∈ 1,2 of two receiv-
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Figure 1: Block diagram of the proposed U-Net model.

ing coils are mapped to the orders of Chebyshev poly-
nomials. Subsequently, as indicated in [2, Eq.(25)], the
reconstruction approximates the convolved particle dis-
tribution c̃i (x)by summation of tensor products of Cheby-
shev polynomials of second kind weighted with the cor-
responding frequency components of ûi k for each coil.
Because the approximated particle distributions equal
the true distributions convolved with the derivative of the
Langevin function [3], both reconstructions c̃i (x) have
to be rescaled, deconvolved and combined to a single
image afterwards. The rescaling can be done according
to [2, Eq. (19)].
For the deconvolution and fusion of c̃i (x) two methods
were proposed in [2], one kernel-based technique, re-
ferred as to the SLE deconvolution, and another one,
which uses no explicit kernel, referred to as cumsum
deconvolution. Since the SLE deconvolution treats the
decovolution task as a minimization problem, see [2, Eq.
(39)], which can be solved analytically or iteratively, this
method is further distinguished into SLE-`1 for the iter-
ative solution with an `1-regularization and SLE-`2 for
the analytical solution with an `2-regularization of the
minimization problem.

II.I. Convolutional Neural Network
In this work, we propose a neural network model to per-
form the deconvolution. The proposed model is derived
from the U-Net model in [4]. The inputs of the network
are the normalized real parts of c̃i (x) as input channels,
resulting in an input of shape H ×W ×2. The original
model is based on the typical structure of U-Nets en-
hanced by attention gates. In the encoding part the input
is subsequently processed by convolution blocks consist-
ing of two convolution layers followed by a batchnorm
and a ReLU acitvation function each. In the first layer
of every block the number of feature maps is increased
from 64 after the first one to 512 overall, while the spatial
dimensions are downsampled by a factor 2 using max-
pooling after every block.
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Figure 2: Example of c̃1 for the x-coil (a) and c̃2 for the y-coil
(b). For better visibility of the structures, the value range of
the pixels was constrained to −5 · 10−6 to 5 · 10−6. In (c), the
corresponding ground truth image is shown.

In the decoder part the spatial dimensions are restored
and the number of feature maps is reduced to one. In
this work, we extended the model from [4] by a shortcut
connection with a convolution Layer with kernel size 1×1
and an additional ReLu at the end. The input is passed
through the shortcut connection to fuse c̃i (x) to a single
channel feature map and therefore enable the network
to learn a fitting residual mapping to predict the decon-
volved distribution c (x ). An overview of the network is
depicted in Fig. 1.

III. Experiments

The proposed neural network was trained and tested
using an MPI-scanner simulation to generate training
and test data. The simulation follows the Langevin
model of paramagnetism, excluding relaxation effects.
A Lissajous-type excitation pattern with frequency ra-
tio fx / fy = 33/32 was used, the particle size was set to
30 nm and temperature to 293 K. In this way 7000 simu-
lated voltage signals were created. To obtain more realis-
tic signals, these were corrupted by signal-independent
Gaussian noise, resulting in a signal-to-noise ratio (SNR)
between 15 dB and 40 dB. However, as in [2], a thresh-
olding with a threshold τ = 250 was applied for each
frequency component k to exclude frequency compo-
nents with poor SNR. Using the direct reconstruction
algorithm from Sec. II, 7000 convolved SPIO distribu-
tions for the x- and y-coils were reconstructed from the

10.18416/ijmpi.2023.2303077 © 2023 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2023.2303077
https://dx.doi.org/10.18416/ijmpi.2023.2303077


International Journal on Magnetic Particle Imaging 3

(a) (b)

(c) (d)

Figure 3: An example ground truth image of the test data set
(a). The prediction of the U-Net model (b) and the solution of
the SLE-`1 (c) and SLE-`2 (d) deconvolution.

Table 1: Quantitative results of the U-Net model, SLE-`1 and
SLE-`2 deconvolution.

U-Net SLE-`1 SLE-`2

MSE
Mean 0.029 0.259 0.158

Median 0.027 0.247 0.151
SD 0.015 0.072 0.048

SSIM
Mean 0.88 0.51 0.35

Median 0.88 0.52 0.34
SD 0.056 0.060 0.101

simulated voltage signals.
So, in total, the data set consists of 7000× 2 convolved
images containing blood vessel like structures with a size
128×128 pixels. 5000 images were used for the training of
the neural network, 700 for validation and 1300 for test-
ing of the model. An example from the training dataset
is shown in Fig. 2. The model was trained using the
Adam optimizer with the mean absolute error (MAE) as
objective function and a learning rate of 10−4, which was
decayed by 0.9 after every 30-th epoch. The training pro-
cess was stopped when no improvement was observed,
so the training lasted 345 epochs. In every epoch all train-
ing data were randomly divided into batches containing
20 training samples. To reduce the risk of overfitting the
training data were randomly rotated by 90◦, 180◦ or 270◦

degrees in every epoch.
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Figure 4: Estimated probability density function of the predic-
tions of the U-Net, SLE-`1 and SLE-`2 deconvolution regarding
MSE (a) and SSIM (b).

IV. Results and discussion

The trained neural network was compared to the two
SLE deconvolution methods and the cumsum decon-
volution from [2, Sec. 2.3]. Since the results of the SLE
deconvolution are highly dependent on the choice of an
appropriate regularization parameter λ, see [2, Eq. (39)],
we chose λ in both cases to minimize the average error
on the test data. Therefore, values in the range from 10−5

to 105 for SLE-`1 and values in the range from 105 to 1015

for SLE-`2 in steps of 101 were tested. A minimal average
MAE was achieved with λ= 103 for SLE-`1 and λ= 1010

for SLE-`2. For SLE-`1 the minimization problem was
solved by the fast iterative shrinkage thresholding algo-
rithm (FISTA) [5]. Moreover, it became evident that, due
to the noise no suitable parameters could be found for
the cumsum method to obtain reasonable results. The re-
sults were significantly worse than for the other methods,
as it was already the case in [2]. Therefore, a detailed pre-
sentation of these results will be omitted here. To com-
pare the deconvolution methods, two error measures,
the mean squared error (MSE) and the structural similar-
ity index (SSIM)[6]were calculated. For both metrics, the
median, average and standard deviation (SD) over the
whole test data set is shown in Table 1. The U-Net model
outperforms both SLE deconvolution methods. The re-
sults show an improvement in both metrics, which is also
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reflected in an improvement in the visual image quality.
An example prediction for all methods is depicted in Fig.
3. Furthermore, in order to better visualize differences in
performance between the methods, probability density
functions (PDF) based on a kernel density estimation re-
garding the MSE and SSIM of all predictions of the three
methods were computed using an Epanechinkov kernel
with a bandwidth of 0.012. The PDFs are shown in Fig. 4.
The PDFs support an assumption which is also indicated
by the calculated standard deviations, specifically the
lowest variance can be expected for the predictions of
the U-Net. Furthermore, it can be assumed that in al-
most all cases the predictions of the U-Net will have a
lower MSE or a higher SSIM than the predictions of the
other methods.

V. Conclusion
The experiments performed on simulated data in this
work show a possible way to enable fast and high-quality
image reconstructions in MPI. Therefore, in the recently
proposed method for direct image reconstruction in [2]
the conventional deconvolution methods were replaced
with a dedicated U-Net model. The presented U-Net was
able to outperform the conventional methods on simu-
lated data of blood vessel like structures.
The U-Net achieved the highest image quality of all meth-
ods on the test data. However, in order to better evalu-
ate the general applicability of the presented approach,
experiments on real-world data and with different pa-

rameter setting in the reconstruction process should be
performed. Furthermore, it can be expected that the net-
work architecture could be further optimized to achieve
more stable deconvolution results.
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