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Abstract
Deep learning can be used in many tasks for Magnetic Particle Imaging (MPI), prominently to reduce the calibration
time of system matrix (SM)-based reconstruction by recovering undersampled SMs or directly reconstructing
measurements without an SM. The success of supervised machine learning methods depends on the used training
data, which should have high quality, match the distribution of the desired test cases and be cleanly labeled. For MPI,
such data rarely exists. To find robust features in limited complex input data, the unsupervised method contrastive
learning can be used. In this work, we show its applicability to MPI voltage signals to improve tasks like SM recovery
and direct reconstruction of real MPI data in 2D. SM recovery is performed by predicting voltage signals of samples
placed in the MPI field of view, which could also provide an alternative to classic simulation frameworks that cannot
match real MPI measurements.

I. Introduction

The applicability and flexibility of Magnetic Particle
Imaging (MPI) both in preclinical research as well as the
translation to human scale is limited in big parts by the
lack of realistic particle models. For image reconstruc-
tion, particle, environmental, and scanner characteris-
tics can be implicitly stored in the system matrix (SM),
which is acquired in a time-consuming calibration scan.
Recently, deep learning has been used to reduce this cali-
bration time by recovering the frequency components of
an undersampled SM [1]. Another approach is the direct
reconstruction from the voltage or frequency signal of an
object measurement to its concentration distribution [2].

The success of both approaches highly depends on
the available training data, where the size of the data set
is equally important as the versatility of the training sam-

ples and the overlap with the test data distribution. As
such datasets are still rare in MPI, we propose to adapt
the approach of contrastive learning of music represen-
tations (CLMR) [3] as an unsupervised pretraining task
on MPI data. With this approach, the MPI input data is
encoded in latent representations that can then be used
for multiple purposes - here used for SM recovery and
direct reconstruction.

I.I. Contrastive learning

The key concept behind contrastive learning is to find fea-
tures in complex natural input data that make any subse-
quent prediction task easier and more robust. In CLMR,
which is based on a simple framework for contrastive
learning of visual representations (SimCLR) [4], these fea-
tures are learned by maximizing the agreement between
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Figure 1: Framework including contrastive learning pretrain-
ing and either recovery or reconstruction as main task.

features of augmented views of the same input sample.
Thus, the core components of the contrastive learning
method are as follows: (1) A set of data augmentations
that produce two correlated, augmented examples of
one MPI input sample, the ‘positive pair’. (2) An encoder
and a projector network mapping the augmented sam-
ples to the latent space in which the contrastive loss is
formulated, aiming to identify the positive pair from the
negative examples in a batch. The used loss function is
the normalized temperature-scaled cross-entropy loss,
also called NT-Xent loss [4].

II. Materials and methods
In Figure 1, the complete framework including the main
prediction tasks can be seen. For the training of the pro-
posed framework, we use an SM from the OpenMPIData
initiative [5], acquired with 2D excitation using perimag®
particles on a grid of 19×19×19 voxels, covering a volume
of 38 mm×38 mm×19 mm. Only the main slice (slice 10)
is used to reduce the whole framework to the complexity
of the 2D plane.

All time domain training data is preprocessed with
a bandpass filter from 80 kHz - 600 kHz to remove un-
wanted signal contributions. The data is then normalized
by half of the total maximum amplitude of the dataset
as this proved to yield good network performance. Both
to enhance the variability of signals for the pretraining
task as well as to emulate concentration distributions
for the reconstruction task, single SM measurements are
combined in weighted linear combinations. For the re-
covery task, the input consists of single SM columns and
the network has to predict each column’s ‘neighbor’, i.e.
the measured voltage signal of the neighboring voxel in
y-direction in the scanner. For each task (pretraining, re-
covery, reconstruction), the used input samples are split
80:20 for training and validation. For both recovery and
reconstruction task, a mean squared error (MSE) loss is
used during training, calculated based on the networks’
output and the ground-truth for the respective task. For
the additional contrastive NT-Xent loss, the temperature
parameter is set to 0.5.

The data augmentation operations needed for the

contrastive learning task are: Polarity inversion, i.e. the
amplitude is multiplied by -1, additive white Gaussian
noise with a signal-to-noise ratio between [−25,−15]dB
to the original signal, and gain reduction between
[−20,−1]dB. All augmentations are applied with a prob-
ability of 0.5.

Further training specifications are: batch size of 32;
Adam optimizer [6] with a learning rate of 1e-4 and
β1 = 0.9 and β2 = 0.999; He initialization [7] for all con-
volutional layers in the pretraining task; all trainings run
for 1000 epochs but only the best epochs are evaluated.
The architecture of the used models is (conv: convolu-
tional layer, f: filters, fs: filter sizes, s: strides, p: paddings,
lin: linear layer):

• Encoder netw.: 5×[conv1 - batch norm - ReLU] (f:
256, fs: [8, 5, 4, 4, 4], s: [4, 3, 2, 2, 2])

• Projection netw.: lin - ReLU - lin (out: 64)

• Recovery head: lin - ReLU - lin - conv1 - ReLU -
conv1 (f: 8, fs: [3, 1], s: 1)

• Reconstruction head: lin (out: 192) - ELU(0.1) -
reshape(19 × 19) - 2×[conv2 (f: 8, fs: 3, s: 1) -
ELU(0.1)]

Testing of the proposed method is performed on an-
other SM from the OpenMPIData initiative, using 2D exci-
tation and perimag® particles but on a grid of 37×37×37
voxels, covering a volume of 37 mm×37 mm×18.5 mm.
Only the main slice (slice 18) is considered. For the recov-
ery task, every fourth voxel measurement in y-direction
(and every second in x-direction) is given as input to
the network under the assumption that the network has
learned to predict every second voxel measurement (in
y-direction) based on the broader grid of the training SM.
To evaluate the reconstruction performance, every sec-
ond voxel measurement in x- and y-direction of the test
SM slice is used as input to the reconstruction network
and the output is compared to the ground-truth concen-
tration distribution, which is one illuminated voxel. The
benefit of contrastive learning is evaluated by training in
two different settings: Training without the contrastive
loss (wo-CL) and pretraining the encoder and projection
network using the contrastive loss and then training the
main tasks (CL).

III. Results and discussion
In Figure 2, the results for the recovery task can be seen
for the SM slice at time step 80. The time domain is cho-
sen for visualization as the networks’ input and output
are time domain signals but note that the network sees
all time steps of one position at once and not all positions
of one time step. Using the input, recovered and ground-
truth SM, the OpenMPIData resolution phantom is re-
constructed in frequency domain using the classic Kacz-
marz algorithm with Tikhonov regularization (λ= 0.01;
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Figure 2: SM slice at time step 80 of the input SM (inp), re-
covered without (wo-CL), with (CL) contrastive loss and the
ground-truth slice (gt). Below are the corresponding recon-
struction results of the resolution phantom. NRMSE values are
given in % in the images.

Figure 3: Reconstruction results of SM voxel (red square,
ground truth (gt)) without (wo-CL) and with (CL) contrastive
learning and using classic reconstruction. NRMSE values are
given in % in the images.

3 iter.). The reconstruction results are also depicted in
Figure 2.
The normalized root MSE (NRMSE) between recovered
and ground-truth SM measurement over all time steps
is: 2.2 %±0.4 % (wo-CL) and 1.9 %±0.4 % (CL).

For the reconstruction task, the NRMSE over
all tested SM voxels is: 16.0 %±5.7 % (wo-CL) and
16.4 %±4.5 % (CL). An example for one reconstructed
voxel can be seen in Figure 3 for wo-CL, CL and using
classic reconstruction (λ = 0; 1 iter.) with the training
SM.

For both tasks, the contrastive learning pretraining
yields both quantitative and qualitative improvements.
Visually, this is not as prominent in the recovery task
(Figure 2) as in the reconstruction task (Figure 3) but the
former task is also considerably easier. Nonetheless, the
reconstruction task shows the possibility to generate MPI
time traces with deep learning. As training and test data
used here were acquired using the same particles and on
a similar voxel grid, the generalizability of this approach
has to be investigated further.

In terms of the reconstruction task, the results look
promising, with a clear benefit from the contrastive learn-
ing pretraining, visible in Figure 3. It is also the first time
that a learned direct reconstruction of real MPI data is
performed in 2D, if only for single illuminated voxels and

with a high NRMSE over all test samples.
This shows the general applicability of contrastive

learning to MPI time traces but a thorough investigation,
especially of the influence of the used augmentations,
will be subject to future work. Other ablation studies are
also necessary to investigate the influence of contrastive
learning in contrast to using more data or e.g. combining
both main tasks in a simultaneous training setting.

IV. Conclusion
In this work, we show SM recovery based on the predic-
tion of 1D voltage signals and the direct reconstruction
of MPI measurements to 2D concentration distributions.
Both tasks use the same encoding network that can be
pretrained using a contrastive learning approach, which
showed a benefit for both main tasks. The pretraining
can be performed unsupervised on any available MPI
measurements. In the future, the presented framework
could enable the prediction of high resolution SMs from
very few calibration measurements. This would be an
alternative to classic simulations that usually cannot suf-
ficiently resemble real measurements.

Direct reconstruction without the need for an SM
would be the fastest and most versatile solution for MPI
but is difficult due to the multitude of parameters the
measurement signal depends on. Here, the application
of contrastive learning as pretraining shows promising
results. Another possibility could be, rather than generat-
ing the tracer concentration distribution, only predicting
parameters like particle binding status or temperature,
from the measured voltage signal.
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