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Abstract
Accurate modeling of the mean magnetic moment of an ensemble of magnetic particles in dynamic magnetic
fields is a challenging task that requires sophisticated differential equation solvers. However, these methods are
computationally costly and therefore not practical for long excitation sequences such as those of the Lissajous type.
In this paper we propose to accelerate simulations by using a neural network mapping from the input parameter
functions that are applied to the original particle simulator directly to the mean magnetic moment output function.
The architecture of the neural network is based on the Fourier neural operator, which allows to train mappings
between function spaces. Our results show that the particle simulation can be accelerated by a factor of about 200
while the relative error of the neural network simulator remains below 1.5 %.

I. Introduction

Accurate knowledge of the mean magnetic moment of
magnetic nanoparticles (MNP) is crucial for solving the
image reconstruction problem in magnetic particle imag-
ing (MPI). While time-consuming calibration methods
are still commonly used, model-based approaches have
recently gained substantially in accuracy [1]. These meth-
ods require the solution of a partial differential equation
(PDE) like the Fokker-Planck equation [2–4]. Using the
methods of lines, the PDE can be transformed into an
ordinary differential equation (ODE). Solving this ODE
can be computationally costly , especially for Lissajous
type imaging sequences. For instance, the system matrix
of a 2D Lissajous type sequence evaluated on a 30×30
grid requires about 64 min of simulation time on a single
CPU core, whereas a 3D system matrix evaluated on a
30×30×30 grid requires 40 d. This is much longer than

the robot-based calibration, which would require just
about 20 h. These numbers hold for a single set of pa-
rameters describing the nanoparticles’ properties, which
need to be known prior to simulation. If the parameters
are unknown, several such simulations are required to
solve the parameter identification problem [5, 6].

One way to accelerate MNP simulation is to exploit
parallel computing, which allows speedups in the range
of 100–1000. An alternative that we use in this work is
to exploit machine learning for the solution of PDEs. In
particular, we take the state of the art Fourier Neural Op-
erator (FNO) approach [7, 8], which learns the mapping
from the PDE input parameters to its solutions and de-
velop a framework for computing the mean magnetic
moment of MNP induced by 3D Lissajous-type imaging
sequences evaluated on 3D grids in a shorter time than
an actual calibration would take.
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Figure 1: Architecture of the FNO. K and Q are dense layers
that adapt the channel dimensions so that the Fourier layers
operate on NC channels. Within each Fourier layer, the data
path is split into two processing paths, of which one applies
a filter R in Fourier domain and the other applies a weighting
plus channel combination W in time domain.

II. Methods and materials
Particle magnetization model: For the simulation
of the mean magnetic moment of MNP we follow
the Fokker-Planck equation approach for the Landau-
Lifshitz-Gilbert equation as already described in [1, 9].
Without loss of generality, we consider the Néel relax-
ation case, which can approximate both the case of im-
mobilized [6] and free particles suspended in fluid [1]
sufficiently well. The solution of a Fokker-Planck simula-
tor depends on the following input parameters:

1. the applied magnetic field HHH : [0, T ]→R3 where T
is the length of the considered time interval

2. the particle diameter D ∈R+,

3. the anisotropy constant Kanis ∈R+,

4. the easy axis nnn ∈ S2.

We may combine the last two parameters into KKK anis =
Kanisnnn ∈ R3. These parameters define a function ppp :
[0, T ] → RNp , ppp (t ) = (HHH (t ), D ,KKK anis) with Np = 7. The
output of the Fokker-Planck simulator is the mean mag-
netic moment m̄mm : [0, T ]→R3. The solver FFokker-Plank can
thus be considered to be an operator that maps from
the function ppp to the function m̄mm , i.e. FFokker-Plank(ppp ) = m̄mm ,
which comprises PDE solution and expectation operator.

Fourier neural operator: The basic idea of the neural
operator framework [7] is to train a (deep) neural network,
which operates on functions instead of discrete arrays.
This is achieved by transforming the domain from e.g.
the discrete time domain into the Fourier domain, which
is then independent of the resolution of the discretiza-
tion in time domain. When using a Fourier transform,
the operator is named Fourier neural operator (FNO) [8].
More specifically, it consists of several so-called Fourier
layers, which apply a discrete Fourier transform to the
input matrix along the time dimension and apply both a
low pass and a learned filter to the Fourier coefficients
as shown in Fig. 1. All filters are implemented as dense
layers, which also allow for channel combination. FNOs
allow to approximate solutions to an entire class of dif-
ferential equations with high accuracy, since the FNO
gets the parameters of the differential equation as input.

I.e. they approximate the abstract operator which maps
a specific parameter to the corresponding solution.

To apply the FNO for MNP simulation, we replace
the operator FFokker-Plank by the operator FFNO operating
on the same parameter function ppp . In the actual imple-
mentation, the parameter function ppp is discretized along
the time dimension at Nt = 200 time points tk =

k T
Nt

,
k = 1, 2, . . . , Nt , such that the input of the FNO is the ma-
trix ppp S =
�

(ppp (tk ))d
�

k=1,...,Nt ;d=1,...,Np
∈ RNt ×Np . The output

of the FNO is a discrete sequence of mean magnetic mo-
ments mmm S ∈RNt ×3.

Data generation and training: For network train-
ing and testing, Ndata = 5000 data tuples (ppp (i )S ,m̄mm (i )

S ), i =
1, . . . , Ndata are generated (90 % training, 10 % testing).
The time dependent field HHH is generated using Nt uni-
formly distributed random numbers within the interval
[−Hmax, Hmax] for each component x , y , z with Hmax =
20 mT/µ0. The sampling rate was chosen to be 2.5 MHz
resulting in a time length of 80 µs. As we expect mag-
netic fields with limited slope HHH , each component of the
magnetic field vector is convolved in the time dimension
with a Gaussian kernel with randomly chosen width σ
from the interval [4, 20]. nnn ∈ S2 and Kanis ∈ (0, 1600] Jm−3

are again drawn from uniform distributions. The particle
core diameter is chosen to be constant: D = 20 nm. The
ground truth solution for the mean magnetic moment
m̄mm S is generated by Fokker-Planck simulation. Network
training is performed by minimizing a relative `2-loss us-
ing Adam. The network is trained with decaying learning
rate η ∈ {10−3, 10−4, 10−5}, using 100 epochs for each rate.
After training, the relative error is 0.828 % on the training
data and 0.959 % on independently generated test data.

We trained the network using functions defined on
the short and constant time interval [0, Tsnippet]. To apply
the network on arbitrary length intervals [0, Tinference]we
divide the interval into overlapping length Tsnippet snip-
pets and apply the network on each snippet individually.
The snippets are combined using a Hann window ensur-
ing smooth transitions.

Numerical experiments: After performing the train-
ing, the performance of the network is evaluated on
2D MPI system matrices, which are calculated using
the Fokker-Planck solver [10] and the trained FNO.
The 2D Lissajous imaging sequence (frequencies fx =
2.5 MHz/102, fy = 2.5 MHz/96, amplitudes Ax , A y =
12 mT/µ0, gradient 1 T/m/µ0) is chosen based on the
real imaging sequence of the preclinical MPI system of
Bruker [1]. We consider particles of the same 20 nm diam-
eter as used for the test data and an anisotropy constant
of Kanis = 1250 Jm−3. In the first setting, the easy-axis n
is chosen as a gradient field, which has been shown to
approximate the behavior of fluid MNP very well [1]. In
the second case, we consider axis-aligned particles with
a fixed easy-axis (45◦ and 135◦ w.r.t. the x -axis) in the xy
plane [6]. The system matrix is sampled on a 30×30 grid
including 25% overscan.
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Figure 2: Simulated 2D system matrices using the physics-based Fokker-Planck model (first row) and the FNO model (second
row). The first column shows simulated fluid MNPs, whereas the second and third column show axis-aligned immobilized MNPs
(nnn rotated by 45◦ and 135◦ w.r.t. the x -axis in the xy plane). For each system matrix representative rows corresponding to mixing
orders mx , mx ∈ {0, . . . , 3} are shown. Each frequency component is normalized before applying the complex colormap shown
on the right.

III. Results
Fig. 2 shows the system matrices calculated using the
Fokker-Planck model and the FNO model. One can see
that qualitatively, the FNO solution resembles the key
characteristics of the Fokker-Planck solution very well.
The mean error over all positions is 1.2 % for the fluid SM
and 1.1 % (45◦), 1.1 % (135◦) for the immobilized SMs.

IV. Discussion and conclusion
In this work, we have shown that Fourier neural op-
erators provide a powerful framework for accelerating
the Fokker-Planck-based MNP simulation. The Fokker-
Planck simulation of one 2D system matrix took 64 min
on a single core of an Apple M1Max CPU. The FNO solu-
tion took just 20 s which is an acceleration of a factor 192.
On a GPU (Nvidia Geforce 2080 TI), the time was further
reduced to 2.7 s. For a 3D system matrix evaluated on a
303 grid, the simulation time went from 40 d to 5 h on the
single CPU core and 25 min on the GPU. All these num-
bers need to be compared to 4 h (single core CPU) for
generating the training data and 14 min for training on
the GPU. Even when taking this time into account, it is a
factor 206 faster to generate a 3D system matrix with the
FNO simulator than with the Fokker-Planck Simulator.

An open question is, how the accuracy of the FNO
approach is affected when training with different particle
diameters and with a larger set of anisotropy constants.
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