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Abstract
The signal in MPI depends on magnetic nanoparticle (MNP) parameters and environmental conditions, as well
as drive field (DF) settings and measurement system response. In this study, we propose a dictionary-based
algorithm using a coupled Brown-Néel rotation model to simultaneously estimate the MNP parameters together
with system transfer function. We then propose an empirical method that enables signal prediction at unmeasured
DF frequencies, where measurement data is not available.

I. Introduction
Magnetic Particle Imaging (MPI) utilizes the nonlin-
ear magnetization response of magnetic nanoparticles
(MNPs), governed by two main mechanisms: Néel and
Brownian rotation. In the Brownian process, MNP physi-
cally rotates to align its magnetic moment with the ap-
plied field, whereas the Néel process internally flips the
magnetic moment [1]. The Brownian and Néel mecha-
nisms are coupled such that the physical rotation of the
MNP and the magnetic moment rotation are interdepen-
dent.

Previous work has shown that applications of MPI,
such as relaxation-based viscosity mapping and tempera-
ture mapping, may have optimal drive field (DF) frequen-
cies that are different than the commonly used 25 kHz
[2, 3]. However, determining the optimal DF settings re-
quires extensive experimental measurements. To better
understand the trends in the MNP response, accurate

modeling of the underlying physics is crucial. Previous
work employed model-based simulation approaches to
explain the magnetic response and estimate the parame-
ters of MNPs [4–6].

In this work, we propose a dictionary-based method
that also accounts for measurement system response to
estimate the parameters that give rise to the measured
MNP signal. We also propose an empirical method to
predict the system response at DF frequencies where
no measurement data is available, enabling MNP signal
prediction unmeasured DF frequencies.

II. Methods and Materials

II.I. Dictionary Preparation

The magnetization responses of MNPs with varying mag-
netic parameters under sinusoidal DFs were simulated
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by solving ordinary differential equations given in [7],
derived from the Fokker-Planck equations of a coupled
Brown-Néel rotation model. The simulated MNPs had
uniaxial magnetic anisotropy constant (K ) ranging from
1 kJ m−3 to 10 kJ m−3, core diameter (dc ) ranging from
5 nm to 30 nm, and hydrodynamic diameter (dh ) rang-
ing from 20 nm to 130 nm. In total, the responses for
4680 different MNPs were simulated. The response of
each MNP was simulated at 6 different DFs with 10 mT
and 15 mT amplitude and 250 Hz, 1 kHz, and 2 kHz fre-
quency. These relatively low frequencies were chosen, as
they were previously shown to have high viscosity sensi-
tivity [3, 8]. In addition, the simulations were repeated at
6 different viscosity levels (η) ranging from 0.893 mPa · s
to 15.33 mPa · s. The Gilbert damping constant, satura-
tion magnetization, and temperature were assumed to be
0.1 , 360 kA/m, and 25o C, respectively. At the considered
frequencies, the coupled Brown-Neel rotation model pro-
vided considerably different MNP signals than the sim-
pler Brown-only and Langevin models, underscoring the
importance of accurate modeling.

II.II. Problem Formulation

Assuming that the measurement setup can be modeled
as a linear time-invariant (LTI) system, we formulated
the problem in the frequency domain to solve simulta-
neously for the transfer function (TF) of the measure-
ment setup and the dictionary weights. Note that the TFs
vary with the DF settings, since both the transmit and
receive chain characteristics change with the applied DF
amplitude and frequency. While the estimated weights
enable us to estimate the magnetic parameters of the
tested MNP, the estimated TF allows us to characterize
the system in a calibration-free manner. We formulate
this problem as follows:

min
x∈Rn×1,H∈Rm×m

‖H Ax − b ‖2
2 s.t. x ≥ 0 (1)

where A∈Rm×n is the dictionary matrix constructed with
the simulated MNP signals, b∈Rm×1 is the measurement
vector with concatenated experimental data from differ-
ent viscosity levels, H∈Rm×m is the diagonal matrix with
the TF values as diagonal entries, n is the number of
MNPs in the dictionary, m is the total number of har-
monics used for parameter estimation, and x∈Rn×1 is
the vector of dictionary weights.To integrate different
DFs into the problem, we concatenated the correspond-
ing matrices from the different DFs vertically. Then, we
simultaneously solved for H and a common optimal x
using alternating minimization methods, i.e., keeping
one variable fixed while the other variable is optimized.

It should be noted that there are infinitely many (x , H )
pairs that satisfy Eq. 1 but have different scalings, i.e.,
(k x , H /k ) for some arbitrary constant k . However, such
a scaling does not affect the MNP signal prediction re-
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Figure 1: (a) In-house arbitrary waveform MPS setup. (b)
Example measured and predicted signals (normalized together)
for the sample at 0.89 mPa·s viscosity level, at two different field
amplitudes at 1 kHz DF frequency.

sults since x and H are eventually multiplied for signal
prediction purposes.

II.III. Transfer Function and Signal
Prediction

Unless we have measured data at a specific DF, the TF for
that DF can not be obtained via Eq 1. For this purpose,
we propose an empirical method that predicts the TF at
an unmeasured DF frequency and amplitude using the
previously estimated TFs at measured DF frequencies
with the same amplitude. Accordingly, at each harmonic
number, a linear fit is performed to the estimated TF am-
plitude in logarithmic scale versus the DF frequency in
logarithmic scale at the measured DFs. The TF ampli-
tude at the unmeasured DF is then predicted using this
linear fit.

For the MNP signal prediction at the unmeasured DF,
first a response is simulated considering the dictionary
weights. The predicted TF amplitude is then applied to
this response to predict the MNP signal.

II.IV. Quantitative Assessments

Note that we only predict the amplitude of the TF, while
directly assigning zero phase to each harmonic to sim-
plify the problem. Since we observed a linear phase re-
sponse for the TF solutions, ignoring the phase of the
TF causes the predicted signal to only be shifted in time.
Therefore, a time shift is applied to the predicted signal
to quantitatively compare its accuracy with respect to
the reference signal (i.e., the actual measured signal at
that DF setting). As a quantitative evaluation metric, nor-
malized root mean square error (NRMSE) between the
measured and predicted signals was utilized. As a second
metric, we compared the normalized root mean square
(RMS) amplitudes of the signals as follows:

ŝr m s =
1

fd (H z ) ·Bd (T ) · F e (g )
×

√

√

√ 1

N

N
∑

n=1

s 2
n (2)
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Figure 2: MNP parameter and TF estimation results when
1 kHz DF measurements are left out. The probability mass
functions for (a) dc , (b) K , and (c) dh are displayed. (d) Esti-
mated TF amplitude at 250 Hz and 2 kHz, at 10 mT amplitude.
TF amplitudes were normalized with respect to the TF value at
the third harmonic of 250 Hz. Dashed line shows the predicted
TF amplitude at 1 kHz.

Here, the RMS signal is normalized by DF frequency fd ,
DF amplitude Bd , and iron content F e . Lastly, we com-
pared the time interval between two zero crossing time
points in a one-half cycle, tz c . To enable comparison
relative to DF period Td , we defined percentage zero-
crossing time interval as:

t̂z c =
tz c

Td
×100 (3)

II.V. Experiments

The experiments were performed on an in-house arbi-
trary waveform magnetic particle spectrometer (MPS)
setup, shown in Fig. 1a. The power amplifier (AE Techron
7224) amplifies the DF waveform from the data acquisi-
tion card (NI USB-6383) and sends it to the DF coil. The
received signal is amplified by a low-noise amplifier (SRS
SR560) and sent to a PC to be processed in MATLAB. The
experiments were conducted at 10 mT and 15 mT DF
amplitudes, at 250 Hz, 1 kHz, and 2 kHz DF frequencies.
MNP samples at 6 different viscosity levels were prepared
using glycerol and deionized water [9], with each sample
containing 26.2 µl of Perimag nanoparticles (Micromod
GmbH, Germany) with a total volume of 70 µl.

7

9

11

t zc
 (%

)

5

6

7

8

s rm
s 
(a

.u
.)

0

1

2

3

N
R

M
SE

 (%
)

15 mT
10 mT

viscosity (mPa s)
0 10 20 0 10 20 0 10 20

15 mT - measured
15 mT - predicted
10 mT - measured
10 mT - predicted

a)

b)

c)

^
^

250 Hz 1 kHz 2 kHz

.

Figure 3: Signal prediction accuracy at 3 DF frequencies and
2 DF amplitudes, plotted as a function of sample viscosity. (a)
NRMSE of prediction, and (b) ŝr m s and (c) t̂z c for the predicted
and measured signals. In each case, measurements at the rele-
vant DF frequency were entirely left out during prediction.

III. Results and Discussion

Figure 1b shows the predicted and measured signals at
1 kHz for 0.89 mPa · s viscosity level. The signal predic-
tions works accurately throughout the period, with the
exception of slight mismatches in the signal tails. Fig-
ure 2 shows the estimated MNP parameter distribution
and the TF amplitudes for the case where 1 kHz DF mea-
surements are left out, together with the predicted TF
amplitude at 1 kHz. We observed that the estimated pa-
rameter distribution varies only slightly depending on
the left out DF frequency. For example, the mean core di-
ameters were 19.9 nm, 21.1 nm, and 20.9 nm for the left
out frequencies 250 Hz, 1 kHz, and 2 kHz, respectively.

Figure 3 shows the quantitative assessment results
for the prediction. For each case, measurements at the
relevant DF frequency were entirely left out during pa-
rameter estimation and signal prediction. The predicted
response was then compared with the actual measured
response at that DF setting. Overall, the signal prediction
works successfully at a wide range of DF settings. Accord-
ingly, NMRSE for the signal prediction remains below
3% at all viscosity levels and DF settings. Evaluations on
ŝr m s and t̂z c also demonstrate a close match between
the measured and predicted signals, but also provide a
better insight regarding the differences between the mea-
sured and predicted signals. To illustrate, while NMRSE
remains near constant at all viscosity levels at 2 kHz, both
ŝr m s and t̂z c demonstrate a slight deviation between the
measured and predicted signals at the highest viscosity.

In this work, we modeled MNPs as single core spheri-

10.18416/ijmpi.2023.2303004 © 2023 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2023.2303004
https://dx.doi.org/10.18416/ijmpi.2023.2303004


International Journal on Magnetic Particle Imaging 4

cal particles with uniaxial magnetic anisotropy. There-
fore, the estimated distributions in Fig. 2a-c are for
“effective parameters” that may not have a full physi-
cal correspondence, especially in the case of multicore
MNPs. Nonetheless, the quantitative assessments in
Fig. 3 demonstrate that these effective parameters suc-
cessfully capture the trends in MNP signal at different DF
settings. Overall, the results indicate that the proposed
method works successfully in predicting TFs and MNP
signals. Further verification of the proposed method at a
wider range of DF settings remains as future work.

IV. Conclusion
This work proposes an algorithm to predict MNP signals
at DF frequencies where no measurement is available, us-
ing a model-based dictionary approach. The qualitative
and quantitative assessments demonstrate successful
signal prediction at unmeasured DF frequencies. The
proposed signal prediction approach has potential ap-
plications, such as determining the optimal settings for
viscosity mapping and temperature mapping using MPI.
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