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Abstract
Image reconstruction based on the system matrix in magnetic particle imaging (MPI) involves an ill-posed inverse
problem, which is often solved using iterative optimization procedures that use regularization. Reconstruction
performance is highly dependent on the quality of information captured by the regularization prior. Learning-based
methods have been recently introduced that significantly improve prior information in MPI reconstruction. Yet,
these methods can perform suboptimally under drifts in the image scale between the training and test sets. In this
study, we assess the influence of scale drifts on the performance a recent plug-ang-play method (PP-MPI) that uses
a pre-trained denoiser. We introduce a new denoiser scaling technique that improves reliability of PP-MPI against
deviations in image scale. The proposed technique enables high quality reconstructions that are robust against
scale drifts between training and testing sets.

I. Introduction

Magnetic particle imaging (MPI) allows high resolution
and contrast imaging of magnetic nanoparticles (MNP).
A common framework for image reconstruction poses
an inverse problem based on the system matrix (SM)
[1], which can then be solved using regularized, iterative
optimization. Because the inverse problem is ill-posed,
reconstruction quality relies heavily on the regulariza-
tion prior. Conventional methods usually employ hand-
designed priors such as `2-norm or a linear combination
of `1-norm and total variation [2, 3].

Recent studies have proposed learning-based meth-
ods that improve reconstruction performance [4–8].
These methods learn a data-driven prior based on the
distribution of images in a training set. Therefore, distri-

butional drifts encountered at test time can compromise
their performance. A common drift in MPI pertains to
the native changes in image scale [9]. Characterizing the
sensitivity of learning-based methods to scale drifts is
critical for their adoption, and improved techniques are
needed to ensure reliability against scale drifts.

Here, we assess the sensitivity to image scale in a plug-
and-play method, PP-MPI, that we recently introduced
for MPI reconstruction [9]. PP-MPI trains a deep residual
architecture to denoise synthetic MPI image, then uses
this denoising prior to regularize the solution of an itera-
tive optimization that reconstructs actual MPI image. To
enhance reliability against scale drifts, we propose a new
denoiser scaling technique for MPI reconstruction that
does not include any tunable scale-dependent parame-
ters. Our proposed technique performs a small number
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of iterations to obtain an initial image for estimating the
scaling parameter, and then scales the denoiser accord-
ingly in remaining iterations. We compare the proposed
technique to other non-scaled baselines that are trained
on low-dynamic range (LDR), mid-dynamic range (MDR)
and high-dynamic range (HDR) images, respectively. We
show that the proposed technique outperforms all base-
lines under scale mismatch.

II. Theory
SM-based reconstruction uses the linear forward model:

Ax+n= y, (1)

where A is the SM, x is the image vector, n is the noise
vector, and y is the data vector. A is often measured with
a calibration scan [10]. The measured SM is then used to
recover the images by solving an optimization [3]:

arg min
x

R (x) s. t. ‖Ax−y‖2 ≤ ε, (2)

where R (·) is the regularization prior and ε is the error
bound on the noise level. Conventional methods use
hand-designed priors such as `2-norm or a linear combi-
nation of `1-norm and total variation for reconstruction.
However, these priors may fall short of capturing intri-
cate attributes of MPI images. As an alternative, learning-
based methods based on multi-layer perceptron (MLP)
[7, 8] and untrained convolutional neural network (CNN)
models [4, 6] have been proposed. Data-driven models
that are trained for a specific SM might show limited gen-
eralization, whereas learning untrained models at test
time can yield high computational burden.

We have recently proposed a plug-and-play method
for MPI (PP-MPI) [9]. PP-MPI uses a dense residual archi-
tecture that is pre-trained to perform a denoising task on
noise-added MPI phantoms, derived synthetically from
experimental magnetic resonance angiogram (MRA) im-
ages. During reconstruction with an iterative optimiza-
tion, the image is projected through the trained network
for regularization (see Alg. 1). While promising results
have been reported with PP-MPI, its performance is af-
fected by scale drifts between training and test images.
Here, we propose a new technique for improving the
robustness of PP-MPI against mismatches between the
dynamic ranges of training versus test images. The pro-
posed technique performs few iterations with the pre-
trained, non-scaled denoiser to obtain an initial estimate
of the image scale. Denoiser scaling is then performed
based on this estimate in remaining iterations, to address
the scale drift between the training-test sets [11]. Here,
the scaling parameter γ is taken as the peak image in-
tensity after 40 iterations, and denoiser scaling is then
achieved by normalizing the denoiser input and multi-
plying the denoised image by γ:

z(1)n+1 = γ fP P

�

1/γ
�

xn+1−d(1)n

��

. (3)

Algorithm 1 PP-MPI reconstruction based on ADMM

Variables
n : iteration index
xn : reconstructed image
z (i )n : splitting variables; d (i )n : Lagrange multipliers
fP P : proximal mapping for denoising network
ΨIE (ε,I ,b)

: proximal mapping for data consistency

Initialize z (i )0 and d (i )0 for i = 0, 1 , set n← 0
while Stopping criterion is not satisfied do

xn+1← (I+AT A)−1(AT (z(0)n +d(0)n ) + z(1)n +d(1)n )
z(1)n+1← fP P (xn+1−d(1)n )
d(1)n+1← d(1)n + z(1)n+1−xn+1

z(0)n+1←ΨIE (ε,I ,b)
(Axn+1−d(0)n )

d(0)n+1← d(0)n + z(0)n+1−Axn+1

n← n +1
end while

Figure 1: pSNR performance of PP-MPI models for test images
whose dynamic ranges were scaled in [0.25 5.00] to emulate
drifts with respect to training images (i.e., 1 denotes matching
scale between training-test images). Results shown for non-
scaled models trained on images with varying dynamic ranges
(LDR, MDR, HDR), a scaled model based on a least-squares
scale estimate (LS-Scl), and the proposed technique.

III. Methods

In this study, a field-free-line MPI system with a selec-
tion field gradient strength of 2.5 T/m was simulated. A
sinusoidal drive field with a frequency of 23.2 kHz was
used to scan a field of view of 64× 64 mm2. Monodis-
perse MNPs with a diameter of 33.5 nm at 300 ◦K and a
magnetic saturation of 0.55 T/µ0 were used. Finally, an
SM of 64×64 (1 mm / pixel) size was generated.

To proposed denoiser scaling technique was com-
pared against several baselines. First, non-scaled mod-
els were obtained by training the denoiser across images
with a broad range of dynamic ranges. To do this, we
scaled each image in the training set randomly by a factor
of α. The value of αwas uniformly distributed between
α∼U (1, 1) for low-dynamic range (LDR), α∼U (0.5, 1.5)
for mid-dynamic range (MDR) and α∼U (0.1, 5) for high
dynamic range (HDR), with U (a , b ) denoting the uni-
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Figure 2: Reconstructions of a test phantom along with corresponding error maps for PP-MPI models. HDR is a non-scaled
model trained with HDR images, LS-Scl is a scaled model based on a least-squares scale estimate, and Prop. is the proposed
denoiser scaling technique. Results are given across drift factors in [0.10 5.00]. The images and error maps are normalized by the
drift factor to facilitate comparisons across varying scales. The error map is multiplied by 4 for improved visibility.

formly distributed random variable between a and b .
Hence, during training, we trained the denoiser to re-
cover αxi from the noisy measurement αxi +n2, where
n2 was an i.i.d. Gaussian noise with a fixed standard de-
viation of 0.1. Second, a scaled-model was obtained by
first estimating the image scale as the peak intensity in an
initial least-squares reconstruction [5], and then scaling
the denoiser as described in Eq. 3 during all iterations.

For all experiments, we used the MRA dataset and the
training procedure described in [9]. To avoid inverse
crime, we generated data using the 64 × 64 SM, then
reconstructed images on a downsampled SM with size
32×32. Eight separate image reconstructions were per-
formed by emulating scale difts in the test set by scaling
test images with [0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 5] relative to
training images, where 1 corresponds to matched scales
between training-test sets. Peak signal-to-noise-ratio
(pSNR) was measured on images restored to their origi-
nal scales:

pSN R (x, xr e f ) = 20log10

� p
N

‖x−xr e f ‖2

�

, (4)

where xr e f is the reference image and N = 1024 is the
number of pixels in the image.

IV. Results

Figure 1 shows the pSNR performance of PP-MPI models
based on non-scaled denoisers trained under varying
dynamic ranges (LDR, MDR, HDR), a scaled denoiser
where the scale is estimated based on a least-squares

reconstruction, and the proposed two-stage scaled de-
noiser. Reconstructions were performed for test images
whose relative dynamic ranges were altered with a drift
factor of [0.25 5.00], where 1 denotes matching dynamic
range. Noise was added to attain a data SNR level of
20 dB at each scale. Among non-scaled models, the de-
noiser trained with HDR images performs favorably, al-
beit with notable performance losses below a drift factor
of 0.50. Meanwhile, given the reconstruction errors in
least-squares reconstructions, the least-squares scaled
denoiser performs poorly beyond a scaling of 0.50. In
comparison, the proposed technique performs realiably
across a broad range of drift factors.

Figure 2 displays reconstructions of a representative
test phantom along with corresponding error maps. Re-
sults are shown of PP-MPI models based on the non-
scaled denoiser trained with HDR images that attained
relatively higher performance among non-scaled vari-
ants, the least-squares scaled denoiser and the proposed
two-stage scaled denoiser. Images are displayed for drift
factors in [0.10 5.00]. In general, all models tend to per-
form best at a scaling of 1, with the exception of the least-
squares scaling that yields higher errors as the image scal-
ing grows. The non-scaled HDR denoiser suffers from
performance loss towards lower drift factors, and the
least-squares scaled denoiser performs poorly towards
higher drift factors. In contrast, the proposed technique
produces high-quality reconstructions across the exam-
ined range of drift factors.
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V. Conclusion
Here we presented a denoiser scaling technique to im-
prove reliability of PP-MPI against drist in image scale.
We find that non-scaled models trained on HDR images
are relatively less sensitive to drifts, but they still show
poor performance on test images with LDR. Meanwhile,
scaled models based on least-squares yield biased esti-
mates of the image scale due to reconstruction errors,
particularly for MDR and HDR images. In contrast, the
proposed scaling technique yields robust performance
across a broad range of image scales, without requiring
any manual tuning. Here we primarily focus on the re-
cent PP-MPI approach, yet our findings and the pro-
posed scaling method can help improve reliability of
other learning-based MPI methods against scale drifts.
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