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Abstract
Magnetic particle imaging is a tracer-based imaging modality developed to detect the concentration of
superparamagnetic iron oxide nanoparticles. The capability for imaging is due to the high sensitivity to the
nanoparticle’s nonlinear response to the applied magnetic field. This modality relies on the spatial distribution
of the tracer material which makes it suitable for applications such as imaging blood flow or tracking medical
instruments without the need of harmful radiation. Magnetic particle imaging benefits from a high temporal
resolution, but it also suffers from missing background information, e.g., from biological tissue. Commonly the
lack of information is remedied by magnetic resonance imaging. Image reconstructions from both modalities
are computed independently and aligned subsequently to allow inferences. We use the additional information
commonly provided by magnetic resonance imaging to improve the reconstruction in magnetic particle imaging.
For this purpose, a Tikhonov-type functional is equipped with a structural prior where the additional information
is incorporated. By minimizing this functional, we obtain improved reconstructions of the concentration of
nanoparticles which is illustrated in numerical simulations.

I. Introduction

Magnetic particle imaging (MPI) is a tracer-based imag-
ing modality developed to detect the concentration of
superparamagnetic iron oxide nanoparticles [1]. It is
highly sensitive to the nanoparticle’s nonlinear response
to the applied magnetic field and allows a fast data ac-
quisition [2]. The high temporal resolution makes MPI
suitable for applications such as imaging blood flow or
tracking medical instruments [3–5]. The concentration
of nanoparticles, which contains not necessarily any
further anatomical information, is determined by the
fast change of the applied magnetic field. The magnetic

field is designed in a way such that a field free point
(FFP), respectively a field free line, is moved along
a certain trajectory. The dynamic of the magnetic
field causes a measurable change of the nanoparticle’s
magnetization.

The present paper deals with rapid MPI sequences
generated by moving the FFP along Lissajous curves.
Since the system matrix therefore obeys a complex
structure, the matrix, which is challenging to model,
is usually measured [6, 7] although there are some ap-
proaches for a model-based reconstruction [8, 9]. In the
case of Cartesian sequences as used in [10–12], the MPI
signal can be described by a simple coordinate trans-
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formation followed by a spatial convolution. These
reconstruction methods [13, 14] known as X-space re-
construction for these types of sequences are usually
not formulated as an inverse problem.

Since the considered reconstruction in MPI is an
ill-posed inverse problem [9, 15], it requires regular-
ization. Current reconstruction methods are based on
Tikhonov-type regularization [3, 16–18]. Direct solvers
such as QR decomposition or singular value decompo-
sition are in practice computationally too expensive
for large system matrices such that the corresponding
normal equation is solved iteratively. Most of the pub-
lished papers considering Lissajous type MPI sequences
apply the regularized Kaczmarz method, known also
as algebraic reconstruction technique [3, 16, 19, 20].
The Kaczmarz method shows fast convergence due to
the fact that the rows of the system matrix are close
to orthogonal. Moreover, a nonnegativity constraint
[3] for the particle concentration can be included eas-
ily. In some publications [16], a diagonal weighting
matrix is introduced in the Tikhonov-regularization
which weights the individual rows of the system matrix
and the measurement vector.

In MPI the tracer concentration is reconstructed
which does not contain any other anatomical informa-
tion. As a result, MPI is often conducted together with
magnetic resonance imaging (MRI). It is common prac-
tice that MPI and MRI measurements are performed in
different scanners [3, 19] requiring a subsequent align-
ment of both reconstructions. For example, this is done
by hand in [5], where the authors show how to track
a labeled angioplasty-catheter in-vitro when remov-
ing a stenosis. Existing bimodal MPI-MRI scanners
[21, 22] allow to perform both measurements without
moving the subject which simplifies image registration
and allows to improve the MPI reconstruction using
information from another modality.

Bimodal reconstruction techniques can follow two
different approaches. On the one hand, a joint recon-
struction problem coupling both inversions is solved.
On the other hand, the reconstruction from one modal-
ity is used as a priori information for the second modal-
ity. We follow the latter approach to incorporate MRI
information into the MPI reconstruction. However,
this problem is already addressed in other applications.
For example, MRI is used in combination with positron
emission tomography [23, 24]. Structural information
from computer tomography is also used for this pur-
pose. Multi-contrast images, which can be seen as
another information source, are used in MRI [25].

Methods can be distinguished by the kind of im-
age information used in the reconstruction process.
Information theoretical measures can improve recon-
structions [26]. Another possibility is the extraction of
structural information, i.e. of features such as edges,
from the image and the incorporation into the recon-

struction [27, 28]. However, none of these methods
have been already applied to the MPI problem with a
priori information given by MRI.

Therefore, we will assume in the following that we
have a MRI image as a priori information available.
We will propose a new image reconstruction method
for MPI based on a Tikhonov-regularization with total
variation as penalty term. Our goals are the follow-
ing: (1) a definition of a regularization method which
improves the reconstruction compared to the start-of-
the-art methods; (2) a derivation of a solver adapted
to the needs of MPI; (3) a demonstration of the advan-
tages of our proposed method with help of numerical
tests.

In order to achieve the first goal, we propose to
use a weighted total variation as regularizing term
where structural information from an a priori image
is incorporated. This term will promote sparsity in
the gradient of the image and will favor edges which
are also present in the a priori image. Moreover, in
order to obtain positive particle concentrations, we
add a non-negativity constraint. As an efficient solver
for the minimization problem, we adapt an algorithm
proposed in [25] to the specific needs of MPI. It is
a splitting method based on the alternating method
of multipliers. For the last goal, we conduct a series
of simulated experiments with known ground truth.
The results show that the proposed method improves
the image quality significantly compared to pure total
variation regularization and even more to the state-of-
the art reconstruction with respect to visual inspection
as well as to image quality measures.

This paper is organized as follows. In Sec. II, the
MPI reconstruction problem is first formulated, and the
proposed method is motivated. Moreover, a weighted
total variation is defined which incorporates the a priori
edge information into the proposed variational regular-
ization method. The resulting minimization problem of
the Tikhonov-functional is solved by a splitting method,
which is derived in Sec. III. In Sec. IV, we conduct a
simulation study and demonstrate that the proposed
method with edge information from the a priori image
significantly improves the image quality.

II. Methods
II.I. Problem formulation
Magnetic particle imaging does not provide informa-
tion about the background, for example from tissue.
As a result, several studies, which primarily address
magnetic particle imaging, use MRI images as a ref-
erence [3, 5, 19]. For example in [3], a MRI image
of a mouse is used to allow reasoning from the MPI
reconstruction. For this purpose, the MRI image is
aligned to the vena cava and the heart chambers. The
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main criteria to do the alignment by hand are common
features of landmarks. We can find edges, e.g. the
vascular walls of the vena cava, which both the MPI
and MRI image have in common. These studies have
all in common that the MPI problem is solved inde-
pendently of the available a priori information given
by a previously computed MRI image.

The problem of reconstructing the concentration
from the MPI signal is formulated as a discrete linear
inverse problem motivated by the measured system
matrix [7]. Let the concentration function c : Ω→ R+,
d = 2, 3, Ω ⊂ Rd bounded, be an element of a function
space X. We assume a given basis {φi}i=1,...,N ⊂ X,
N ∈ N, of a finite-dimensional subspace XN ⊂ X.
From the application point of view, piecewise constant
functions are a reasonable assumption for these ba-
sis functions as they may represent a “delta”-probe
which is moved over the entire region Ω [7]. In
MPI time-dependent magnetic fields are applied, and
time-dependent potentials are measured. However,
due to the analog filter process in the signal acquisi-
tion chain, the MPI reconstruction problem is com-
monly formulated in frequency space by computing
the discrete Fourier transform of the measured time
signal. Inserting a finite-dimensional concentration
c̃ =

∑N
i=1 ciφi ∈ XN in the MPI reconstruction prob-

lem results in the system of linear equations given by

uk =
∫
Ω

c̃(x)sk(x) dx =
N∑
i=1

ci

∫
Ω

sk(x)φi(x) dx︸ ︷︷ ︸
=:ski

(1)

for k = 1, . . . ,K, K ∈ N where uk ∈ C is the Fourier
coefficient of the k-th frequency and sk : Ω→ C is the
respective Fourier coefficient function being an element
of a function space Y . To guarantee the existence of the
matrix entries ski, a standard choice of function spaces
is X = Y = L2(Ω). The problem of reconstructing
the concentration function thus reduces to the discrete
linear inverse problem given by

Sc = u , (2)

where c ∈ RN+ is the tracer concentration, S ∈ CK×N
is the system matrix in frequency space and u ∈ CK
contains the measured Fourier coefficients. The prior
information is an already reconstructed MRI image
and is denoted by v ∈ RN+ .

II.II. Structural a priori information
The solution of the MPI problem in Eq. (2) is deter-
mined by minimizing a Tikhonov functional

Jα(c) = 1
2‖Sc− u‖

2 + αR(c) , (3)

where the a priori information provided by the MRI
image is considered in the regularization term R . Here
and in the remainder of this article ‖ · ‖ denotes the
Euclidean norm. By minimizing the functional Jα, the
discrepancy term forces the solution to fit the data.
Simultaneously the regularization term enforces the
solution to fulfill the assumed properties. The impact
of the regularization is controlled by the regularization
parameter α. The standard case R(c) = 1/2‖c‖2 is
commonly used to compute MPI reconstructions [16].
More sophisticated regularization techniques includ-
ing sparseness and total variation assumptions were
recently applied to MPI [29]. In order to improve the
MPI reconstruction, we use an adapted weighted to-
tal variation penalty term which is motivated by the
structure both MRI and MPI images have in common.

First, we introduce the standard total variation
(TV) penalty term [30]. The discrete TV term is given
by the l1-norm of the gradient of the image c, i.e.,
TV : RN → R+ with

TV(c) =
N∑
n=1
‖∇cn‖, (4)

where ∇cn ∈ Rd, n = 1, . . . , N , is the discretized
gradient with respect to the location. This functional
is convex, favors denoising and preserves edges, but it
does not take additional information into account.

A natural extension of this approach is the intro-
duction of spatially dependent weights wn ∈ [0, 1],
n = 1, . . . , N , (see also [31] for the continuous case)
resulting in a functional wTV : RN → R+,

wTV(c) =
N∑
n=1

wn‖∇cn‖. (5)

The weights can be determined by the a priori image
information given from another modality. Gradient
information of the MRI image v might be used as an
indicator for regions containing an edge. A small weight
wn is assigned to a large gradient in the MRI image,
i.e ‖∇vn‖ is large, to favor edges in this particular
region in the concentration function. Regions having a
small gradient in the MRI image get a larger weight.
There are several ways to implement the behavior of
the weights in dependence of the MRI image v. It
could be determined by contrast [32] or orientation
[33] only which is disadvantageous if the scaling of the
a priori image differs from the reconstructed image.
The latter case is named directional total variation
by the authors of [33]. But in our setup, no favored
orientation exists such that a weighting depending
solely on the orientations in the MRI image is not
reasonable. One feature which was used primarily
in the alignment process is the relation between the
orientations of the gradient in the MRI image and
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the reconstructed concentration. If both gradients are
parallel, an edge is more reasonable in this region which
is realized by a small weight. And if the gradients are
orthogonal, the weight should be large. This behavior
cannot be realized by a weighting depending solely
on the a priori information. Therefore, the weights
are assumed to be functions wn : RN → [0, 1], n =
1, . . . , N , with wn(c) = gn(c, v) for a given v ∈ RN
and a function g : RN × RN → [0, 1]N describing the
relation between both reconstructions. The penalty
term thus becomes

R(c) =
N∑
n=1

wn(c)‖∇cn‖. (6)

The desired behavior can be implemented by a variety
of functions g. A particular intuitive choice can be
formulated by the angle between both gradients. Let β :
Rd × Rd → [0, 2π) be the angle between the two input
vectors. Then a reasonable weighting can be defined
by gn(v, c) = | sin(β(∇vn,∇cn))| if v, c ∈ RN have
nonzero gradients ∇vn,∇cn. If one of the gradients
is zero, gn(v, c) = 1 holds. The smaller the angle
between both gradients, the smaller is the influence of
the penalty term, i.e., edges are less penalized in the
particular region.

The formulation of the penalty term in terms of
trigonometric functions gives an intuitive geometric in-
terpretation. But for minimizing the functional Jα, we
use the following equivalent formulation of R, which
can be related to existing algorithmic approaches. Us-
ing the following equality for ∇vn,∇cn 6= 0

wn(c) = | sin(β(∇vn,∇cn))|

=
(

1− 〈∇vn,∇cn〉2

‖∇vn‖2‖∇cn‖2

)1/2

= 1
‖∇cn‖

(
〈∇cn,∇cn〉 − 〈

∇vn
‖∇vn‖

,∇cn〉2
)1/2

= 1
‖∇cn‖

∥∥∥∥∇cn − 〈 ∇vn‖∇vn‖
,∇cn〉

∇vn
‖∇vn‖

∥∥∥∥
= 1
‖∇cn‖

∥∥∥∥(I − ∇vn
‖∇vn‖

∇vTn
‖∇vn‖

)
∇cn

∥∥∥∥ ,
(7)

we arrive at the following penalty term

wn(c)‖cn‖

=
{∥∥∥(I − ∇vn∇vT

n

‖∇vn‖2

)
∇cn

∥∥∥ , ∇vn,∇cn 6= 0
‖∇cn‖, else

(8)

defined for two different cases. To combine these cases,
we need to avoid division by zero and introduce an
ε > 0. Then the penalty term in Eq. (6) becomes

R(c) =
N∑
n=1

∥∥∥∥(I − ∇vn∇vTn
‖∇vn‖2 + ε

)
∇cn

∥∥∥∥ , (9)

which is equal to the term (8) in the second case of
∇vn,∇cn = 0. For the first case ∇vn,∇cn 6= 0, the
equality holds in the limit ε→ 0.

This penalty term is also named directional total
variation by some other authors [25]. Note that the
terminology is used inconsistently in the literature as
other authors [33] use this term for a different kind of
functional. To obtain a reconstruction of the concen-
tration, we use the following algorithmic approach to
minimize the functional Jα.

III. Algorithmic approach
For minimizing problem (3) with the penalty term
given in Eq. (9), we mainly follow Ehrhardt and Betcke
[25] and adapt the algorithm to MPI where necessary.
Instead of solving this problem as a whole, we split it
into two less complex subproblems. Introducing a sec-
ond variable x in the penalty term and requiring both
variables c and x to be equal leads to the equivalent
minimization problem

min
c,x∈RN

+

1
2‖Sc− u‖

2 + αR(x) such that c = x (10)

with the associated scaled augmented Lagrangian

Lρ(c, x, λ) = ‖Sc−u‖2+αR(x)+ρ

2‖c−x+λ‖2−ρ2‖λ‖
2

(11)
with the Lagrange multiplier λ ∈ CN and the penalty
parameter ρ > 0. A common technique to solve this
kind of problem is the alternating direction method of
multipliers (ADMM) [34] consisting of the following
three steps

ck+1 = arg min
c∈CN

1
2‖Sc− u‖

2 + ρ

2‖c− x
k + λk‖2

(12)

xk+1 = arg min
x∈RN

+

αR(x) + ρ

2‖c
k+1 − x+ λk‖2 (13)

λk+1 = λk + ck+1 − xk+1. (14)

In every iteration the two subproblems are minimized
in an alternating manner. In the first step, we allow
the tracer concentration c to be complex valued and
negative because this more general problem can be
solved more efficiently. Since the solution of the mini-
mization problem (13) in the next step does not depend
on the imaginary part of ck+1, this generalization does
not affect the solution of the overall problem. In the
following second step, we force the solution x to be
nonnegative and real. Since the constraint c = x re-
quires both variables to be equal, the output of these
first two steps is a physically reasonable tracer con-
centration which is nonnegative and real. Afterwards
the Lagrangian multiplier is updated. We also vary
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the penalty parameter ρ to improve convergence. For
details on this as well as a stopping criterion, we refer
to [34]. The ADMM for MPI reconstruction can be
found in Alg. 1.

Let us now look at the minimization of the two
subproblems. The optimality condition of the first
problem (12) is

0 = ∇c
(

1
2‖Sc− u‖

2 + ρ

2‖c− x
k + λk‖2

)
= 〈S, Sc− u〉+ ρ〈1, c− xk + λk〉
= 〈1, S∗Sc+ ρc〉 − 〈1, S∗u+ ρ(xk − λk)〉.

Hence, we need to solve the linear equation system

(S∗S + ρI)ck+1 = (S∗u+ ρ(xk − λk)), (15)

which we solve numerically using the MATLAB imple-
mentation of the biconjugate gradients method (func-
tion bicg) [35].

Algorithm 1 ADMM for MPI reconstruction using prior
information
Input:

u ∈ CK MPI data
α > 0 regularization parameter
S ∈ CK×N system matrix
niter ∈ N maximum number of iterations

Output:
xk ∈ RN+ reconstructed tracer

1: function ADMM_MPI(u, α, S, niter)
2: ρ← 1, x0, λ0 ← 0 . initialize variables
3: for i = 0 : niter do

update minimization problems
4: ck+1 ← (S∗S + ρI)−1(S∗u+ ρ(xk − λk))
5: xk+1 ← proxα/ρR+χ[0,∞)N

(ck+1 + λk) .

apply Alg. (2)
update Lagrange multipliers

6: λk+1 ← λk + ck+1 − xk+1

update ρ and check for convergence . see [34]
7: end for
8: return xk

9: end function

The second problem, as seen in Eq. (13), can be
written as proximal mapping

proxαR+χ[0,∞)N
(y) := arg min

x∈RN
+

{
||x− y||2

2 + αR(x)
}
,

(16)
where y := ck+1 + λk. To keep notations short, we
denote the weights given in Eq. (9) as

Dn = I − ∇vn∇vTn
‖∇vn‖2 + ε

. (17)

Analogous to the classic total variation [36], the authors
of [25] propose to dualize the structural total variation
as

R(x) =
N∑
n=1
‖Dn∇xn‖ = sup

p∈U
〈−divD∗p, x〉. (18)

Hence, instead of minimizing the l1-norm of the
weighted gradient, we can minimize the supremum
of the divergence of the weighted gradient over the unit
ball in the gradient space U = {x ∈ Rd×N | ‖xn‖ ≤ 1}.
As we discretize the gradient as forward differences, the
matching discrete divergence is approximated by back-
ward differences. The multiplication D∗p denotes the
multiplication of a matrix field D∗ ∈ Rd×d×N and the
vector field p ∈ Rd×N , i.e. the product of D∗n ∈ Rd×d
and pn ∈ Rd in every component n. Combining this
dualization with Eq. (16) and applying the fast itera-
tive shrinkage-thresholding algorithm (FISTA) [37] to
compute the resulting proximal operator, they arrive
at Alg. 2. This algorithm uses two different orthog-
onal projections, the projection onto the unit ball in
gradient space

PU(pn) = 1
max{1, ||pn||}

pn (19)

and the projection P[0,∞)N onto the nonnegative real
numbers.

Algorithm 2 Fast gradient projection method for
structure-guided Total Variation
Input:

α > 0 regularization parameter
y ∈ CN proximal point
niter ∈ N maximum number of iterations
D ∈ Rd×d×N anisotropy (prior information)
s > 0 step size for FISTA

Output:
xk ∈ RN+ approximation of minimizer

1: function projection_TV(α, y, niter, D, p
0,s)

2: t0 ← 1, q0, p0 ← 0 . initialize variables
3: for i = 1 : niter do
4: gk ← αD∇P[0,∞)N (y + α divD∗qk−1) .

compute gradient
5: pk ← PU(qk−1 + sgk) . update dual

variable
6: tk ← 1

2

(
1 +

√
(1 + 4(tk−1)2)

)
7: qk ← pk + tk−1−1

tk
(pk − pk−1)

8: end for
9: xk ← P[0,∞)N (y + α divD∗pk)
10: return xk

11: end function
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IV. Results
IV.I. Simulation setup
For the numerical tests, we built up a simulation frame-
work for a 2D FFP scanner. Assuming isotropic parti-
cles with diameter 30 nm, we used the Langevin model
of paramagnetism for modeling the magnetization. The
measurements are simulated with a drive field ampli-
tude 18mT/µ0 in both excitation directions and a gra-
dient strength of Gx = Gy = 2.75T/m/µ0 and accord-
ingly Gz = 5.5 T/m/µ0. The Lissajous measurement
circle with a repetition time of TR = 1ms is generated
by a base frequency of 600 kHz and frequency dividers
24 and 25. The FOV is sampled at 44 × 44 = 1936
positions which leads to a size of 14.1×14.1mm2. Note
that the area covered by the FFP trajectory is only
slightly smaller, i.e. about 13.1×13.1mm2. In order to
avoid inverse crime, we used a 3 times finer grid for the
forward simulations. The phantoms used were scaled
down to the coarser grid using bicubic interpolation.
We added noise on the signal by using the noise model
proposed in [38]. Frequencies higher than 45 kHz and
up to 3MHz have been stored leading to 5992 rows in
the system matrix.

(a) phantom 1 (b) phantom 2
0

1

(c) prior information 1 (d) prior information 2
0

1

Figure 1: MPI phantoms (top row) and additional prior
information (lower row).

We conducted our experiments using the two phan-
toms depicted in Fig. 1. The upper row shows the
MPI phantoms used to simulate the data, while the
lower row contains the additional prior information
used for the reconstruction. Phantom 1 is an abstract
composition of different sized areas with straight and

round edges with different orientations taken from the
examples of the MATLAB toolbox [39]. As all these
features can be expected in a medical application, this
phantom is used for a proof of principle. The second
phantom resembles a vascular tree and illustrates how
our algorithm would work on real data. For both our
phantoms the prior information and the MPI phantom
differ to show how our algorithm handles missing or
superfluous data. We also included a stenosis in the
MPI phantom of the vascular tree (in the middle) in
order to compare different algorithms in handling small
gaps.

IV.II. Reconstructions
Using the two different phantoms discussed in the pre-
vious subsection, we tested the proposed weighted total
variation approach against classic total variation and
a nonnegative Tikhonov regularization as state-of-the-
art. The total variation reconstruction was realized
using our ADMM algorithm without prior informa-
tion (i.e. v = 0), whereas the nonnegative Tikhonov
regularization was computed with a Kaczmarz imple-
mentation from the Github project page of [40]. We
compared the outputs of the different algorithms for
two different noise levels. In the low noise case we
added 5% Gaussian noise on the simulated MPI data
and assumed the MRI image to be perfectly recon-
structed. In the high noise case of 15% on the MPI
data, we also added 1% Gaussian noise on the a priori
informations. The penalty parameter α, balancing the
influence of the used penalty term, was chosen empir-
ically through visual inspection. Apart from assess-
ing the reconstruction quality visually, we computed
quantitative measures, i.e., peak-signal-to-noise ratio
(PSNR) and structural similarity index (SSIM), where
higher values indicate a higher reconstruction quality,
and the Euclidian distance between the true solution
c† and the reconstructed image c.

The results for phantom 1 shown in Fig. 2 were
generated using the parameters in Tab. 1, which also
contains the PSNR and SSIM values for the recon-
structed images. Looking at the tracer reconstructions
in Fig. 2, one can observe that even at a lower noise
level of 5% the state-of-the-art algorithm, i.e. nonneg-
ative Tikhonov regularization, is unable to reconstruct
the cross at the bottom and the two ellipses at the top
properly. The same is true for classic total variation
which produces nevertheless a more homogenous image.
In contrast, the weighted total variation provides sharp
edges and homogenous areas due to the good a priori
information. This is especially noticeable at the border
of the images where the other algorithms fail because
of the low sensitivity of the system matrix at the bor-
der of the field of view. This qualitative assessment is
supported by the PSNR and SSIM values as well as
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the Euclidean distance between the true solution and
the reconstructed tracer concentration, which clearly
indicate that the proposed approach gives the best
reconstruction.

(a) Tikhonov (5% noise) (b) Tikhonov (15% noise)
0

1

(c) TV (5% noise) (d) TV (15% noise)
0

1

(e) R (5% noise) (f) R (15% noise)
0

1

Figure 2: Comparison between nonnegative Tikhonov reg-
ularization (top row), TV regularization (middle row) and
the proposed method (bottom row) for reconstructions of
phantom 1 from noisy data corrupted with 5% (left col-
umn) and 15% (right column) Gaussian noise. The results
computed with the proposed method show sharp edges
and a high spatial homogeneity compared to the other two
methods.

Fig. 3 depicts the reconstruction results of phantom
2, which were generated using the parameters in Tab. 2.
Again this table also shows the quantitative measures.
For this phantom, the nonnegative Tikhonov recon-
structions look blurry with a noisy background, but
remarkably the small gap that resembles a stenosis is
visible. The images computed using the classic total
variation have sharper edges, but for the high noise case
the phantom is slightly distorted at the top branches,
which is also observable for the Tikhonov regulariza-
tion. Again the proposed approach offers visually the

Table 1: Regularization parameters used for reconstruction
of phantom 1 (Fig. 2) and image quality measures.

Method α PSNR SSIM ‖c† − c‖

5% noise
Tikhonov 3 · 10−1 18,1 0,673 5,46
TV 1 · 10−7 23,6 0,740 2,90
R 9 · 10−8 27,4 0,874 1,88

15% noise
Tikhonov 1 · 100 19,9 0,496 4,45
TV 1 · 10−7 19,7 0,605 4,54
R 1 · 10−6 25,5 0,858 2,34

best reconstruction results. The branches in the re-
construction are the closest to their original form, and
there is only little noise left in the background. One
aspect which is reconstructed slightly better by classic
total variation is the region where prior information
is missing, i.e., the small gap in the middle branch
and the missing tip at the right branch. Overall the
differences in the outputs of the three methods are
not as big as for the first phantom but still signifi-
cant. This observation is reflected by the quantitative
measurements found in Tab. 2.

Remarkably, the small gap in the middle branch is
reconstructed better in the high noise case by the two
total variation approaches. This is probably due to
the bigger regularization parameters α which, in order
to suppress the noise, puts more importance on the
penalty terms compared to the low noise case. Since
total variation favors piecewise homogenous reconstruc-
tions, edges appear sharper. One has to keep in mind
that the regularization parameters have been chosen
through visual inspection. For a more objective com-
parison of the different algorithms one could do a line
search to find the optimal regularization parameter α
regarding one of the quality measures listed in Tab. 2.
Most likely the optimal parameters differ for each of
these three quality measures.

Table 2: Regularization parameters used for reconstruction
of vascular tree (Fig. 3) and image quality measures.

Method α PSNR SSIM ‖c† − c‖

5% noise
Tikhonov 3 · 10−1 17,8 0,468 5,67
TV 1 · 10−9 19,4 0,841 4,73
R 2 · 10−8 21,0 0,896 3,93

15% noise
Tikhonov 5 · 10−1 16,7 0,429 6,40
TV 1 · 10−8 17,0 0,640 6,24
R 7 · 10−8 19,6 0,759 4,60
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(a) Tikhonov (5% noise) (b) Tikhonov (15% noise)
0
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(c) TV (5% noise) (d) TV (15% noise)
0

1

(e) R (5% noise) (f) R (15% noise)
0

1

Figure 3: Comparison between nonnegative Tikhonov reg-
ularization (top row), TV regularization (middle row) and
the proposed regularization (bottom row) for reconstruc-
tions of phantom 2 (vascular tree) from noisy data corrupted
with 5 % (left column) and 15 % (right column) Gaussian
noise. The proposed method shows clearly superior results,
in particular for the high noise scenario.

V. Discussion
In the present simulation study, we show the potential
to improve the MPI reconstructions by using structural
a priori information. The improved reconstructions
outperform the reconstructions determined by the com-
monly used nonnegative Tikhonov regularization and
those computed by classic total variation qualitatively
as well as quantitatively. They are particularly im-
proved at edges which both the MPI reconstruction
and the a priori image have in common. Although
the a priori information favors equally oriented edges
in the reconstruction, the phantoms are reconstructed
correctly even if an edge is present in the a priori image
but missing in the phantom. Several studies include
MRI images to allow semantic inferences, and the num-

ber of hybrid scanners increases [3, 5, 19, 22]. This
offers an ample opportunity to improve MPI recon-
struction by applying new methodologies which exploit
the additional information.

Possible applications in MPI such as imaging blood
flow or tracking medical instruments benefit from
sharper reconstructions caused by the adapted total
variation regularization. The smooth reconstructions
obtained by the commonly applied Tikhonov approach
allow a less accurate localization. However, one of
the drawbacks of the presented approach might be so
called staircaising effects [41] caused by total variation
regularization due to the l1-norm minimization of the
gradient. This particularly affects imaging blood flow
where the tracer concentration is not necessarily piece-
wise homogeneous. In contrast, medical instruments
are commonly equipped with a marker consisting of
tracer with constant concentration such that staircas-
ing is not necessarily an issue. If necessary, staircasing
may be avoided by using approaches with higher deriva-
tives, for example, total generalized variation [42].

The present work is the basis for several directions
of future research. The promising approach tested in
numerical simulations is planned to be validated on
real data. Moreover, in the case of complex phantoms
with fine structures as in the example of the vascular
tree, a combination of directional total variation with
an additional sparsity promoting l1-norm [43] might
further improve the reconstruction as it has recently
been shown in the context of fused-lasso regularization
[29].

The algorithm can be applied to a three-dimensional
setup without any adaptation. However, three-
dimensional data might require more sophisticated
surface detection methods to, for example, improve
the three-dimensional reconstruction of vascular trees.
It remains future research to incorporate weighting
functions suitable for surface detection. New weight-
ing functions may require new algorithmic solutions to
minimize the proposed functional.
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