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Abstract
Image reconstruction in Magnetic Particle Imaging (MPI) is an ill-posed linear inverse problem. A standard method
for solving such a problem is the regularized least squares approach, which uses, a regularization function to
reduce the impact of measurement noise in the reconstructed image by leveraging prior knowledge. Various
optimization algorithms, including the Kazcmarz method or the Alternating Direction Method of Multipliers
(ADMM), and regularization functions, such as l2 or Fused Lasso priors have been employed. Therefore, the
creation and implementation of cutting-edge image reconstruction techniques necessitate a robust and adaptable
optimization framework. In this work, we present the open-source Julia package RegularizedLeastSquares.jl, which
provides a large selection of common optimization algorithms and allows flexible inclusion of regularization
functions. These features enable the package to achieve state-of-the-art image reconstruction in MPI.

I. Introduction
Image reconstruction for medical imaging, such as Mag-
netic Particle Imaging (MPI) or Magnetic Resonance
Imaging (MRI), involves solving an ill-posed inverse prob-
lem. A common approach to solve such a problem, is to
consider the regularized least squares problem

argmin
x

‖Ax −b ‖2
2 + r (x ), (1)

where A is the imaging operator, x is the solution, b is
the measured data and r is a regularization function.

The first term is the data fidelity cost and it ensures
that the model Ax fits to the measurements b . Here the
choice of a least-squares term is popular, which can be
motivated by the Gauss-Markov theorem. The second
term ensures that x matches the prior knowledge, such

as an expectation on the smoothness of the result, ex-
pressed by the regularization function.

In the context of a system-matrix based MPI recon-
struction A ∈CM×N and b ∈CM are Fourier coefficients
of the system matrix and the measurement voltage, re-
spectively. And lastly x ∈RN

+ is the particle concentration.
The Kaczmarz algorithm is often used to solve problem
(1), as it offers fast convergence due to the rows of the
system matrix being nearly orthogonal [1]. However, sev-
eral others algorithms such as the Conjugate Gradient
Normal Residual (CGNR) [2], Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [3] or Alternating Direc-
tion Method of Multipliers (ADMM) [4] have also been
used in MPI. These methods have been combined with a
variety of regularization functions, including an l2 prior
for Tikhonov regularization [2], an l1 and total variation
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(TV) regularization prior (Fused Lasso) [4, 5], an l1-prior
in the wavelet domain [3] and a machine-learning based
plug-and-play prior (PP) [6]. Finally, MPI reconstruc-
tion methods often apply a variety of additional modi-
fications, such as projections of x into a target domain,
weightings of the system matrix and scaling of the reg-
ularization parameters. As a result MPI reconstruction
packages require a very flexible optimization framework
capable of handling this large range of possible problem
formulations.

In this work we present the open source Julia pack-
age RegularizedLeastSquares.jl, which provides function-
ality to solve problem (1). The package places a focus
on providing flexibility and extensibility, making it par-
ticularly suitable for algorithmic research in MPI. More
precisely, it provides a variety of different optimization al-
gorithms and regularization terms that can be combined
to compose custom regularization functions. Currently,
the package is used as the reconstruction layer of the
Julia image reconstruction packages MPIReco.jl [7] and
MRIReco.jl [8].

II. Methods and Materials
RegularizedLeastSquares.jl consists of one type hierar-
chy for solvers and one for regularization terms. Solvers
are constructed with a given image operator, an (op-
tional) list of regularization terms, and solver specific
arguments, such as the iteration number for iterative
solvers. While solvers and regularization terms are de-
coupled concepts, not every solver can accept every com-
bination of terms. It is possible to list applicable solvers
for a given combination of image operator, data and
terms.

Regularization Terms are the building blocks used
to construct a regularization function. They can be sepa-
rated into two groups, the first of which contains the core
regularization terms. These terms implement a proximal
map [9] either as a term with a regularization parameter
λ, such as the l1 or l2 prior, or as a projection, such as
a mapping to RN

+ . The second group of regularization
terms allows the nesting of terms to adapt the inputs to
the proximal maps. An example of such a term would
be the transformation of x to the Wavelet domain or a
normalization of λ based on the energy of the system
matrix rows or the measurement data.

Creating a regularization function ri for an l1 prior in
the wavelet domain looks as follows:

# Prepare regularization terms
core = L1Regularization(0.8)
wop = WaveletOp(Float32, shape = (32,32))
reg = TransformedRegularization(core, wop)

First a (core) l1 prior with λ = 0.8 is created. It is then

nested inside a regularization term that transforms the
proximal map input into the wavelet domain.

Solvers are the optimization algorithms used to solve
problem (1) for a given set of regularization terms. The
solvers are organized based on their algorithm type, such
as row-action algorithms like Kaczmarz, proximal gradi-
ent algorithms like FISTA or primal dual algorithms like
ADMM. Solvers are not limited to working with dense
matrices and instead can work on any matrix-like data
type implementing certain interface functions. This al-
lows using matrix-free imaging operators, which can save
memory and allow for efficient computations of matrix-
vector products.

Solvers are created and used like this:

# Create solver
solver = Kaczmarz(A, reg = reg, ...)
x = solve(solver, b)

More detailed examples and a list of available solvers,
regularization terms and their parameters can be found
in the documentation1.

III. Results

To showcase the versatility of RegularizedLeastSquares.jl,
we reconstructed two phantoms with different regular-
ization terms and solver combinations considering the
common MPI least-squares approach

argmin
x∈RN

+





Aredx −b red






2

W
+ ri (x ), (2)

where W is a symmetric, positive definite weighting
matrix and ‖x ‖W := ||W 1

2 x ||2 denotes the weighted Eu-
clidean norm. The measurements were performed with
the preclinical MPI system (25/20 FF) from Bruker. The
first phantom is a spiral with two windings, while the sec-
ond phantom contains three dots arranged at the corners
of a triangle. Both phantoms are filled with the tracer per-
imag. The reconstructions are based on a system-matrix
approach with a 2D 32×32 system matrix. Both A and b
were frequency filtered according to an SNR threshold of
1.5 yielding Ared and b red with K <M frequency compo-
nents. Additionally, Ared and b red were multiplied with a
weighting matrix W . The matrix was chosen to realize
diagonal whitening [10] based on the standard deviation
of frequency components of background measurements
taken during the system-matrix calibration.

Each column in Fig. 1 shows a different combina-
tion of solver and regularization terms. The following
regularization functions were considered:

1https://github.com/JuliaImageRecon/
RegularizedLeastSquares.jl/
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Figure 1: Image reconstruction performed with RegularizedLeastSquares.jl. A spiral and a three dots phantom were measured
at the preclinical MPI system from Bruker and reconstructed with a variety of regularization terms and optimization algorithms.
The field of view (FOV) covered by the drive field (DF) of the scanner is marked with dashed boxes.

ra (x ) =λ‖x ‖2
2

rb (x ) =λ‖Φx ‖1

rc (x ) =λ1 ‖Φx ‖1+λ2 ‖x ‖2
2

rd (x ) =λ1 ‖x ‖1+λ2 ‖x ‖2
2

re (x ) =λ1 ‖x ‖1+λ2 ‖x ‖TV

r f (x ) = fpp(x )

Here, Φ denotes the wavelet transform and fpp is a
learned plug-and-play regularization term that is usu-
ally indirectly defined by its proximal mapping function.
In this work, we use the denoiser implementation (i.e.
the exact network weights) provided by [6]. Note that
the various reconstruction parameters, such as the reg-
ularization parameters, the number of iterations, and
the solver-specific parameters, have been tuned by hand
without the intent to reconstruct optimally. Focus of
these imaging experiments is to show the flexibility of
the package and the effects of the regularization func-
tions. A comparison of regularization functions, solvers,
and their optimized parameters in terms of image quality
can be found in [11].

One can see the impacts of the different priors on the
resulting images. The sparsifying effect of the l1 term is
particularly evident in the dot phantoms, where some
reconstructions show only two to three pixels per dot
and essentially no signal outside the dots. Similarly, the
dot phantoms also clearly show the blurring effect of
the l2 term. Especially for the spiral phantoms, the l2

term resulted in an artifact at the border of the image,
which could be removed by additional priors. While the
chosen phantoms are no good use cases for the TV prior,
the resulting flattening along parts of the spiral can be
observed.

IV. Discussion and Conclusion
In this work we have given an overview of the Julia pack-
age RegularizedLeastSquares.jl, which is capable of opti-
mizing regularized least squares problems using a variety
of state-of-the-art reconstruction algorithms for MPI and
other imaging modalities. The solvers are implemented
in an efficient manner and perform optimization steps
such as preallocation. In the future we plan to extend
the framework with GPU support and further machine-
learning integration. By allowing for a flexible construc-
tion and combination of optimization algorithms and
regularization functions, a user can implement, exper-
iment with, and compare different MPI reconstruction
algorithms.
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