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Abstract
In this study, we demonstrate a novel magneto-optical thermometer using a Magneto-optical Kerr Effect (MOKE)
system optimally configured with a photoelastic modulator (PEM) that combines the optical and pyro effects of
magnetic metal nanofilms to detect transient surface temperatures with high sensitivity and temporal resolution.
The temperature-induced Kerr signal of the metal nanofilms is finally transformed into the AC-DC harmonic ratio.
By innovatively configuring the analyzer axis close to the extinction position, the signal gain of the harmonic ratio
can be increased while reducing the background signal, thus significantly improving the SNR of the temperature
measurement. This magneto-optical thermometer combines the high spatial and temporal resolution of MOKE to
provide a possible method for non-invasive and fast temperature measurements on the micro- and nanometer
scales, and is expected to be useful in temperature imaging applications in conjunction with optical imaging
techniques.

I. Introduction
Micro- and nanoscale temperature measurements play a
critical role in biology[1–4], industrial manufacturing[5]
and other fields. Combining metal nanofilms with mag-
netism and optics for measurements is becoming in-
creasingly popular due to its non-invasiveness and high
temporal resolution. The magneto-optical Kerr effect
(MOKE)[6, 7], which describes the change in the polar-
ization and intensity of light before and after its reflection
on the surface of a magnetic medium, exhibits promis-
ing potential in field of temperature measurement at the
micron-nanometer scales owing to their attractive non-
invasiveness, excellent temporal resolution and spatial
resolution[8–10]. Due to the temperature-induced Kerr
signal is very weak, the Kerr rotation angle and typical el-

lipticity were approximately 10−3 rad. Thus, it is essential
to find a method to improve the magneto-optical Kerr
signal gain.

This study proposes an optical temperature measure-
ment method based on Magneto-optical Kerr Effect of
metal nanofilms. The method innovatively sets the ana-
lyzer axis at a small angle a close to 0°, which significantly
increases the harmonic ratio in the case of detecting light
near extinction, resulting in higher sensitivity of tempera-
ture measurements. Thus MOKE-based magneto-optical
thermometers not only enable non-invasive and fast tem-
perature measurements, but can also be combined with
optical imaging techniques for temperature imaging in
the future.
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Figure 1: Schematic diagram of the experimental setup. Com-
ponents: P Polarizer. BS Beam splitter. A analyzer.

II. Working principle

In this study, the temperature-induced magneto-optical
Kerr signal was measured by a typical optical system,
and the schematic diagram of the experimental setup is
shown in Figure. 1. The linearly polarized light that
passes through the polarizer becomes elliptically po-
larized light after reflecting on the surface of the metal
nanofilms, and this elliptically polarized light, which car-
ries the magnetization information of the sample, passes
through the PEM and becomes periodically modulated
elliptically polarized light, and the light intensity of the
linearly polarized light that passes through the polar-
izer is finally received by the photodetector. The PEM
(Hinds PEM-50) generates a periodic retardation with f
as the frequency and β as the maximum amplitude as
δ=β (s i n (2π f t )). The Kerr signal is modulated to each
harmonic of the PEM’s modulation frequency.

In our system, the axis of polarizer and PEM was set
90◦ to and 0◦, correspondingly, and the Jones matrix
method was used to derive a theoretical model of the
temperature-induced Kerr signal from the intensity to
the electrical signal. It can be inferred that the detected
electric field light intensity I for different analyzer orien-
tation angles α can be given by:

I = I0 |rs s |
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Where I0 is the initial intensity of the incident light, theθk
corresponds to the Kerr rotation and the εk corresponds
to the Kerr ellipticity. DPSD algorithm is used to deter-
mine the amplitude of each harmonic of light intensity at
the modulating frequency: DC amplitude VD C , first har-
monic amplitude V1 f , and second harmonic amplitude
V2 f :

VD C = I0 |rs s |KD C
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V1 f = I 0 |rs s |K1 f 2J1 (δ) s i n2αεk (T ) (3)

V2 f = I0 |rs s |K2 f 2J2 (δ) s i n2αθk (T ) (4)

Figure 2: Experimental results of the MO signal for the different
configurations. The temperature dependence of the MO signal.
The MO signal is normalized to zero against 302 K.

where KD C ,K1 f and K2 f represent the amplification
of the photodetector circuit at various frequencies of the
DC, first harmonic, and second harmonic, respectively.
Further, Ji (δ) is c o s (δ) and s i n (δ) Bessel function at
the order i. The expression for the ratio of the first and
second harmonics are:
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Because amplification, or Bessel function, is a
temperature-independent fixed value. The AC/DC har-
monic ratio is called the magneto-optical (MO) sig-
nal, which enables temperature measurements to be
achieved. As a single-valued function of the temperature,
the harmonic ratio can be used as a magneto-optical
signal to measure the temperature.

III. Results and discussion
The response of the MO signal to the temperature for dif-
ferent configurations is shown in Figure. 2. The MO sig-
nals of the near-extinction configurations were all much
higher than typical configuration, and it can be seen that
the signal gains of MO signal increase with decreasing
analyzer angle. The simulation results of the amplitude
at different analyzer angles when the weak Kerr signal
(assuming to be 10−6 rad) caused by 0.1°C temperature
change acts on the harmonics of the light intensity are
shown in Figure. 3. The simulation conditions are that
the initial light intensity is 1 µW and the amplification is
100 kV/W.

The results show that the smaller the analyzer an-
gle, the greater the signal gain of the harmonic ratio,
which enables highly sensitive temperature measure-
ments. It’s worth noting that in the conventional configu-
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Figure 3: Simulation results for DC, harmonic amplitude and
harmonic ratio at different α.

rationα= 45◦, the difference between DC and harmonics
is 6 orders of magnitude, so it’s difficult to achieve a high
SNR measurement of harmonics with such a large back-
ground signal. However, the closer the analyzer angle
is to extinction, the difference between harmonics and
DC will become smaller and smaller, e.g., for α= 2◦, the
difference narrows to 4 orders of magnitude. This means
that by reducing the analyzer angle, the component of
the harmonic signal in the total light intensity can be fur-
ther amplify, attenuating the problem of big background
disturbance during the measurement. The limitations
of this approach depend on the high SNR detection of
weak light by detectors, implying the need to achieve
high-gain and low-noise optical measurements.

We set the optical axis of the analyzer at a small angle
so that the detected light intensity is close to extinction,
and thus the harmonic amplitude can be enhanced with
bigger initial light intensity and amplification of photode-
tector.

IV. Conclusion
The near extinction method proposed in this paper can
effectively improve the temperature resolution com-
pared to the conventional magneto-optical Kerr detec-
tion method with a photoelastic modulator, and fast
temperature measurements have been achieved. Future
work is expected to achieve higher resolution optical tem-
perature sensing by increasing the magnification of the
photodetection and setting a higher intensity extinction
angle, etc., or temperature imaging by combining optical
imaging techniques is also very promising.
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