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Abstract
Image reconstruction in MPI involves estimation of the particle concentration given acquired data and system
matrix (SM). As this is an ill-posed inverse problem, image quality depends heavily on the prior information used
to improve problem conditioning. Recent learning-based priors show great promise for MPI reconstruction, but
priors purely driven by image samples in training datasets can show limited reliability and generalization. Here,
we propose 3DEQ-MPI, a new deep equilibrium technique for 3D MPI reconstruction. 3DEQ-MPI is based on an
infinitely-unrolled network architecture that synergistically leverages a data-driven prior to learn attributes of MPI
images and a physics-driven prior to enforce fidelity to acquired data based on the SM. 3DEQ-MPI is trained on
a simulated dataset, and unlike common deep equilibrium models, it utilizes a Jacobian-free backpropagation
algorithm for fast and stable convergence. Demonstrations on simulated data and experimental OpenMPI data
clearly show the superior performance of 3DEQ-MPI against competing methods.

I. Introduction

MPI offers exceptional contrast and sensitivity in imag-
ing of magnetic nanoparticle (MNP) distributions. Given
acquired data and the system matrix (SM), image recon-
struction requires solution of an ill-posed inverse prob-
lem that benefits from regularization via image priors [1].
Traditional reconstruction methods typically use hand-
crafted priors, such as `2-norm or `1-norm, that may
diverge from the underlying image distribution [2, 3].
Recent studies have instead proposed powerful learning-
based priors to capture latent attributes of the image
distribution from a training set [4–9]. However, purely
data-driven priors that neglect physical constraints re-
garding the measurements can show poor reliability un-
der inherent distributional variations between the train-
ing and test sets, even on the same imaging system [6,
7]. Thus, deep-learning (DL) approaches that respect
physical constraints are direly needed for performant
reconstruction in MPI.

Several recent MPI studies have proposed promising
DL methods that integrate the SM into the reconstruc-
tion model. Deep-image-prior (DIP) methods synthe-
size MPI images natively regularized by convolutional
kernels, whose weights are determined at test time via a
compute-intensive optimization to ensure consistency
to acquired data [4, 5]. Plug-ang-play MPI (PP-MPI) em-
beds an image denoiser pre-trained on simulated MPI
data into an iterative optimization for alternating be-
tween denoising and data-consistency projections [9].
Unrolled methods perform end-to-end training of a cas-
caded architecture interleaving convolution and data-
consistency blocks [10]. DL approaches commonly use
complex network architectures with millions of parame-
ters, resulting in heavy computational burden. As such,
some previous DL-based MPI methods have devised 2D
models for cross-sectional processing to alleviate bur-
den [9]. Yet, exploiting volumetric spatial context in MPI
images can improve reconstructions.
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Here, we introduce 3DEQ-MPI, a new DL-based
method for volumetric MPI reconstruction based on a
deep equilibrium technique. In a recent study, we have
examined the utility of deep equilibrium models for 2D
MPI reconstruction, where computational benefits were
observed over previous state-of-the-art methods [10].
However, the 2D DEQ model does not leverage correlated
information in the through-plane direction of MPI vol-
umes, potentially limiting reconstruction performance.
Furthermore, the 2D DEQ model uses Jacobian back-
propagation, whose training time does not scale well to
3D reconstruction given the elevated model complex-
ity. Hence, our contributions over [10] are three-fold: (1)
3DEQ-MPI leverages a 3D convolutional network archi-
tecture to better model volumetric spatial context [11].
(2) 3DEQ-MPI employs a Jacobian-free backpropagation
algorithm in contrast to Jacobian backpropagation that
can be susceptible to poor convergence. (3) 3DEQ-MPI
provides 3D MPI reconstructions, enabling comparisons
with other methods on the publicly available OpenMPI
dataset. We provide demonstrations on simulated and
OpenMPI [12] datasets that indicate that 3DEQ-MPI pro-
duces superior reconstructions to existing methods.

II. Theory

II.I. MPI Reconstruction

The imaging forward model for MPI is expressed as:

Ax+n= y, (1)

where A ∈ RM×N , x ∈ RN n ∈ RM and y ∈ RM are the
SM measured via a calibration scan, image vector, noise
vector and data vector, respectively; M and N are the
number of frequency components and the grid-size, re-
spectively. The inverse problem for reconstruction can
then be expressed as [3, 13, 14]:

arg min
x

R (x) +λ/2‖Ax−y‖2
2, (2)

where R (·) denotes the regularization due to the image
prior on x, and λ controls the relative balance between
regularization and consistency to the acquired data.

II.II. 3DEQ-MPI

3DEQ-MPI is a deep equilibrium technique for 3D MPI
reconstruction based on a physics-driven unrolled ar-
chitecture, where convolutional blocks (CNN) and data-
consistency (DC) blocks are utilized within multiple iter-
ations of an alternating direction method of multipliers
(ADMM) algorithm. CNNs are implemented as a residual-
dense network [10, 11] adapted for volumetric process-
ing by replacing 2D with 3D convolution operators. A
fixed-point iteration through the unrolled architecture

Figure 1: Training losses of 3DEQ-MPI variants with the pro-
posed Jacobian-free backpropagation (JFB training, orange)
and Jacobian backpropagation (conventional training, blue).
Loss is plotted as a function of training time.

is given as xk+1=hθ (xk ; y, A)with parameters θ . To lower
memory load for storing gradients across multiple iter-
ations, 3DEQ-MPI iterates until a convergent solution
x∗=hθ (x∗; y, A), and learns θ based on the final iteration:

arg min
θ



hθ (x∗; y, A)− x̂r





1
, (3)

where x̂r is the ground-truth image. During training, y
was obtained by multiplying simulated phantom images
(x̂r ) with experimental SMs (A) and adding white Gaus-
sian noise.

Common DEQ methods solve Eq. (3) by evaluating
the Jacobian of the convergent solution:

∂ x∗
∂ θ
=
∂ hθ (x∗)
∂ x∗

∂ x∗
∂ θ
+
∂ hθ (x∗)
∂ θ

, (4)

∂ x∗
∂ θ
=
�

I−
∂ hθ (x∗)
∂ x∗

�−1 ∂ hθ (x∗)
∂ θ

. (5)

However, calculation of the inverse in Eq. (5) requires
an iterative algorithm involving gradients that can show
high computational burden and poor training stability.
To improve computational efficiency and stability, here
we adopt a Jacobian-free backpropagation (JFB) algo-
rithm where the network is treated as a single-iteration
architecture at the convergent solution to avoid the need
for iterative gradient computations [15]. Fig. 1 displays
the training loss curves of 3DEQ-MPI variants imple-
mented based on JFB versus conventional Jacobian back-
propagation. Due to its improved convergence rate, JFB
reaches specific loss values in about 2-10 fold shorter
training times than the conventional algorithm.

III. Methods

III.I. Phantom Dataset
3DEQ-MPI was trained on a simulated phantom dataset.
3D phantoms were generated by superposing Ne ellip-
soids (1≤Ne ≤ 5) within a 95×95×95 imaging grid. Each
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Table 1: Quantitative evaluations on simulated phantoms.
pSNR (dB) listed as mean±std across the test set.

SNR=0 dB SNR=10 dB
ART 26.37±3.36 29.96±1.87

ADMM (`1) 21.87±1.72 31.34±4.18
ADMM (TV) 30.45±2.76 34.02±3.08

ADMM (`1&TV) 30.56±2.93 34.58±3.27
PP-MPI 2D 29.49±1.91 33.30±2.04
PP-MPI 3D 35.72±4.79 43.18±4.72

Unrolled ADMM 34.91±1.84 41.27±2.25
3DEQ-MPI 39.21±3.85 45.95±4.43

Table 2: Run times (msec) and number of iterations while
reconstructing the shape phantom in the OpenMPI dataset.

Run time # of iter.
ART 8138.4 10

ADMM (`1) 253.7 250
ADMM (TV) 919.6 250

ADMM (`1&TV) 1872.3 500
PP-MPI 2D 503.0 100
PP-MPI 3D 264.5 100

Unrolled ADMM 15.3 5
3DEQ-MPI 77.0 25

ellipsoid had random radii and center-location within
the grid. Each phantom was downsampled to 19×19×19
to match the SM size in OpenMPI, and normalized to
a maximum intensity between 0.5 and 1.5. Here, we
restricted the experiments to deployment scenarios in
which the maximum intensity of the imaged phantom
is roughly pre-estimated. In cases where prior estimate
is unavailable, reliability of reconstructions can be im-
proved by using a training dataset of phantoms that span
across a broader range of maximum intensities to cope
with potential variations, or by adopting the scaling tech-
nique introduced in [16]. A total of 40000 phantoms were
generated, with a non-overlapping (30000, 5000, 5000)
split for (training, validation, test) sets.

III.II. Experiments
Demonstrations were performed on the simulated phan-
tom dataset and the experimental OpenMPI dataset. In
both cases, an SM from OpenMPI (SM #3) was used [12].
For each competing method, hyperparameters were op-
timized on the validation set. For the simulated dataset,
data were generated by multiplying the SM with the simu-
lated phantom images followed by white Gaussian noise
addition [10]. Noise was added at two different levels to
attain signal-to-noise-ratios (SNR) of 0 and 10 dB. The
quality of the reconstructed images was measured via
peak SNR (pSNR):

pSN R (x∗, x̂r ) = 20log10

�p
N /‖x∗− x̂r ‖

�

(6)

(a
)

(b
)

(c
)

Figure 2: (a) Reference image depicting the shape phantom
[12]. Representative experimental results in (b) x-y and (c) x-
z planes of reconstructions of the shape phantom from the
OpenMPI dataset.

where x∗ is the reconstructed image. For the experimen-
tal dataset, visual inspections were conducted instead
since ground-truth phantom images are unavailable.

IV. Results
Table 1 lists the pSNR values for the competing meth-
ods (see [10] for method details) evaluated on the sim-
ulated dataset. For each competing method, hyperpa-
rameters were selected to maximize validation perfor-
mance on the simulated phantom dataset, and the num-
ber of iterations were set by continuing iterations until
a convergent solution is reached. Note that except for
PP-MPI 2D proposed in [9], all other DL methods were
3D and were developed within the scope of this work.
While TV regularization helps improve reconstructions
of piece-wise constant ellipsoid shapes, traditional meth-
ods (ART and ADMM variants) perform poorly in general
when compared to DL methods. Among the DL meth-
ods, 3D models (PP-MPI 3D, Unrolled ADMM, 3DEQ-
MPI) perform favorably against the 2D model (PP-MPI
2D), showcasing the benefit of exploiting volumetric con-
text. Overall, 3DEQ-MPI is the top performer with an
average 10 dB pSNR improvement over competing meth-
ods. Compared against its closest competitor, 3DEQ-
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MPI achieves a 3.39 dB improvement at SNR=0 dB and a
2.77 dB improvement at SNR=10 dB.

Figure 2 (a) and (b) display representative experimen-
tal results from the OpenMPI shape phantom. Among
the traditional methods, ART yields spatially-smooth im-
ages with low contrast, and ADMM variants suffer from
high noise amplification. Among the DL methods, PP-
MPI models have residual pixel artifacts on the phan-
tom/background, and the unrolled model has a visible
level of smoothing and contrast loss. Meanwhile, when
compared against the competing methods, 3DEQ-MPI
effectively leverages volumetric context to recover the
cone-shaped phantom with relatively low artifact/noise
while avoiding over-smoothing.

Finally, Table 2 summarizes the run times and num-
ber of iterations for the competing methods that were
used to reconstruct the OpenMPI shape phantom. For
fair comparison among the methods, uncompressed
system matrices were utilized during reconstruction [9].
Methods were implemented using the PyTorch library
and executed on a server equipped with a Nvidia Tesla
V100 GPU. We find that 3DEQ-MPI attains faster recon-
structions than all competing methods, except for un-
rolled ADMM that converges in fewer iterations, and
that 3DEQ-MPI is capable of real-time processing (>12
frames-per-second) of volumetric MPI data.

V. Conclusion
Here, we presented 3DEQ-MPI as a performant and effi-
cient technique for 3D MPI reconstruction. 3DEQ-MPI
employs an unrolled network architecture that cascades
3D CNN blocks for learnable regularization with DC
blocks for enforcing fidelity to the physics of MPI mea-
surements. 3DEQ-MPI iterates its reconstructions until
convergence, and performs backpropagation on the con-
vergent solution to mitigate memory burden. To further
improve training speed and stability, a Jacobian-free algo-
rithm is adopted for optimizing the parameters of 3DEQ-
MPI. Demonstrations on simulated ellipsoidal phantom
and experimental OpenMPI datasets clearly show the
superior performance of 3DEQ-MPI against previous tra-
ditional and learning-based MPI methods.
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