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Abstract
Model-based magnetic particle imaging (MPI) is a challenging task both due to the complicated underlying physical
model and the high numerical effort required for the solution of the corresponding equations of motion. A third
challenge for practical applications is the identification of model parameters that are consistent with the given
experimental setting and produce accurate predictions of the MPI signals. In this work, we show how the parameter
identification problem can be addressed using a learned physics simulator based on the Fourier neural operator.
As an application, we show how model-based system matrices can be estimated from a small set of calibration
measurements, which can also be interpreted as a model-based approach to system matrix recovery. We compared
our approach to established compressed sensing and interpolation schemes and found that it outperformed both.

I. Introduction

Accurate knowledge of the magnetic particle imaging
(MPI) system matrix (SM) is essential for SM-based MPI
reconstruction. Most commonly, the system matrix is
acquired in a time-consuming calibration scan. This
approach is convenient because of its accuracy and ver-
satility. Drawbacks are the long measurement times and
the fact that calibration measurements need to be re-
peated when the acquisition parameters or the types of
magnetic nanoparticles (MNPs) are changed [1].

A promising alternative to the calibration-based ap-
proach is a model-based one. Recently, it has shown its
ability to provide image reconstruction quality on par
with the measurement-based approach [2, 3]. Model-
based MPI offers great flexibility and allows to adapt SMs
to different physical conditions (e.g. field configurations)
once the underlying particle model is specified. However,
a drawback are the long computation times required for
the solution of the underlying Fokker-Planck or Langevin
equations [4]. A breakthrough in this direction was the

introduction of learned simulators, based on Fourier neu-
ral operators (FNOs) [5]. As shown in [6], these have the
potential to speed up Fokker-Planck-simulations by two
orders of magnitude.

Another challenge for the model-based approach is
the identification of model parameters. This is often
done by fitting the model to a number of calibration mea-
surements. For immobilized MNPs, parameter identi-
fication is feasible using a set of one-dimensional mea-
surements, as was shown in [2]. However, this approach
is not applicable for liquid MNPs where the effective
Néel model contains a spatially varying distribution of
anisotropy constants and easy axes [3]. A more generic
approach is described in [7]. However, this approach
becomes impractical for multi-dimensional imaging ap-
plications due to its high numerical complexity.

In this work, we show how FNOs can be used for ef-
ficient parameter identification in MPI. We exploit the
structure of FNOs, which simplifies the computation of
gradients with respect to the physical parameters of the
magnetization model. Based on this, we propose an opti-

10.18416/ijmpi.2024.2403004 © 2024 Infinite Science Publishing

https://orcid.org/0000-0001-8005-8859
https://orcid.org/0000-0002-4737-7863
https://orcid.org/0000-0002-1589-8517
mailto:mirco.grosser@tuhh.de
https://dx.doi.org/10.18416/ijmpi.2024.2403004
https://dx.doi.org/10.18416/ijmpi.2024.2403004


International Journal on Magnetic Particle Imaging 2

mization scheme to identify the model parameters most
consistent with a given set of calibration measurements.
Our results indicate that accurate model-based SMs can
be obtained from significantly fewer calibration measure-
ments than required for a compressed sensing (CS) or
interpolation-based SM estimation.

II. Methods and materials
Particle magnetization model: Our magnetization
model is based on the Fokker-Planck equation for the
Landau-Lifshitz-Gilbert equation [3, 4]. We consider the
Néel relaxation case, which is commonly used for immo-
bilized MNPs [8]. However, we note that it also provides a
sufficiently accurate model for MNPs suspended in fluid,
when using a spatially varying distribution of anisotropy
constants and easy axes [3]. While showing promising
results, this effective model also has a large number of
parameters, which poses a challenge for parameter iden-
tification.

To have an efficient approximation to the Fokker-
Planck-model, we follow the FNO-approach described
in [6]. In this approach, the solver for the Fokker Planck
equation is interpreted as an operator FFFFokker-Plank :
πππ 7→ m̄mm that generates the mean magnetic moment
m̄mm : [0, T ]→R3 from the corresponding acquisition pa-
rameter function πππ : [0, T ]→ RNp . Here πππ is a function
containing all relevant acquisition parameters, includ-
ing the applied magnetic fields, particle diameter and
the vector KKK anis = Kanisnnn . The latter is a combination
of the MNPs anisotropy constant Kanis and its easy axis
nnn . The FNO used in this work has the same architec-
ture as described in [6]. For the model training, we use
magnetization dynamics simulated for pseudo-random
field sequences. The loss and MNP parameters used for
training were chosen as described in [6]. However, in-
stead of keeping the MNP diameter fixed, we sampled it
uniformly from the range [14, 24] nm. With this at hand,
measured MPI data can be simulated using the forward
model

sl (t )≈ ŝπππ,l (t ) :=−µ0

�

al ∗ppp T
l ḞFFFNO{πππ}
�

(t ), (1)

where ppp l denotes the receive coil sensitivity of the l th-
receive coil and al models the high-pass filtering taking
place during signal reception.

Parameter identification: To perform parameter
identification, we consider a set of time-discrete calibra-
tion measurements {sss k }k ∈ {1, ..., K } that are performed
at varying locations in the field of view (FOV). Each mea-
surement is associated with the MNP parametersπππMNP,k

and sequence parameters πππS,k . The πππS,k characterize
the magnetic field sequence used. These should match
for the model and the calibration measurements. To
estimate the MNP parameters for each calibration mea-
surement, we exploit the neural network structure of

the FNO, which allows an easy computation of gradients
with respect to the MNP parameters. Thus, parameter
identification can be performed by solving the inverse
problem

argmin
πππMNP,k
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where ŝssπππ,k denotes the time-discretized form of ŝπππ,k (t ).
Here, ŝssπππ,k combines the information from all receive
channels. The minimization objective only considers
normalized signals and is thus independent of the tracer
concentration used for the calibration measurements.
Minimization of the corresponding loss function can be
done using standard gradient-descent based solvers. In
this work, we used 200 iterations of the Adam optimizer
with a learning rate of 100.

System matrix estimation: Using the results from
the previous section, model-based SMs can be obtained
from a small number of calibration measurements even
for the case of liquid MNPs. To achieve this, we note that
the spatial distribution of MNP parameters is generally
smooth and thus well suited for interpolation. Model-
based SMs can thus be obtained by the following proce-
dure

1. Measure SM columns at a small number of calibra-
tion positions within the FOV.

2. Estimate MNP parameters based on (2).

3. Estimate the MNP parameters at the remaining po-
sitions using interpolation.

4. Simulate high-resolution SMs using the interpo-
lated parameters.

A technical difficulty arises due to the invariance of the
magnetization model under inversion of the MNP easy
axis. This must be taken into account in the interpolation
step. Otherwise, jumps in the parameter maps can cause
significant interpolation errors.

Numerical experiments: To evaluate our model,
SMs were simulated based on the effective Néel model
for fluid MNPs. The imaging sequence used was a
two-dimensional Lissajous sequence (frequencies fx =
2.5 MHz/102, fy = 2.5 MHz/96) with a drive field am-
plitude of 12 mT/µ0 and a selection field gradient of
1 T/m/µ0 in both x- and y-direction. The sampling rate
was 2.5 MHz. The SM was simulated for MNPs with a
core diameter of 20 nm. Following [3], KKK anis was assumed
to be aligned with the selection field with an anisotropy
gradient of 1250 J m−3. The simulated grid had a size of
28×28 and covered a FOV of (30×30) mm. For SM recov-
ery, we estimated the MNP parameters using every third
point in each direction as calibration measurements. For
the interpolation step we used bicubic interpolation. To
simulate measurement noise, we added 5% Gaussian
noise to the calibration measurements prior to parame-
ter estimation.
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Figure 1: Recovered SM patterns (rows 1-3) and the estimated
distribution of Kanis,x (row 4). The superimposed numbers are
the NRMSD and structural similarity index (SSIM) of the recov-
ered frequency components.

For comparison, we performed CS-based SM recov-
ery and bicubic interpolation using the same number of
calibration measurements. Finally, the recovered SMs
were used for image reconstruction. The measured data
was simulated for varying phantoms and 3% Gaussian
noise was added to the signal. Image reconstruction was
performed in frequency space using 100 iterations of the
`2-regularized Kaczmarz algorithm. The regularization
parameter was manually optimized for each reconstruc-
tion.

III. Results

As illustrated in the bottom row of Figure 1, the distri-
bution of the anisotropy closely matches the underlying
ground-truth. Visible differences are only discernible
near the boundaries of the FOV. These arise because
MNPs near the FOV boundaries are always in satura-
tion. Thus, the induced MNP signal only depends weakly
on the underlying MNP parameters. The high quality
estimation of the MNP parameters also carries over to
the resulting SMs. As illustrated in the upper part of
Figure 1, the SM obtained using the proposed method
closely matches the ground-truth, whereas the corre-
sponding CS recovery and the bicubic interpolation show
clearly visible artifacts. This is also reflected in the mean
normalized root mean squared deviation (NRMSD) of all
rows of the recovered SMs, which is 2.66±1.10% for the
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Figure 2: Image reconstruction results for different numerical
phantoms. The superimposed numbers are the NRMSD and
SSIM with respect to the corresponding phantom.

proposed method, 26.18±7.24% for the CS recovery and
25.4±7.36% for the bicubic interpolation.

Similarly, the proposed method results in high-
quality image reconstruction results, which are summa-
rized in Figure 2. On the other hand, the SMs obtained
using CS and bicubic interpolation show clearly visible
artifacts.

IV. Discussion and conclusion

The results obtained in this work show that FNOs are a
promising tool to efficiently address the parameter iden-
tification problem in MPI. This is an important step to
enable a more routine use of model-based MPI in prac-
tical MPI applications. We note that our experiments
are based on the linear distribution of MNP anisotropies
proposed in [3]. In real applications, more complex, but
smooth, distributions are likely to occur. In this case,
where the larger number of parameters becomes diffi-
cult to calibrate, our method can prove invaluable to
obtain accurate model-based SMs.

Having estimated the full set of MNP parameters also
allows for further interesting applications beyond SM
recovery. For instance, it becomes possible to simulate
SMs for different patches in the FOV, while taking into ac-
count prior knowledge about the inhomogeneities of the
applied magnetic fields. We also note that the described
method is very generic and could also be used with other,
further optimized neural network-based magnetization
models.

An important requirement for our method is that the
MNP parameters to be estimated influence the magneti-
zation signal sufficiently strongly. As shown in our results
this can lead to errors for MNPs near the FOV-boundaries.
Moreover, it should be noted that we only considered a
mono-dispersed model so far. Generalizing the model to
the poly-disperse case is a topic for further research. The
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next important step, for this project, will be to evaluate
the proposed method on measured data.
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