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Abstract
In magnetic particle imaging the concentration of superparamagnetic iron oxide nanoparticles is determined by
measuring the particle’s nonlinear response to an applied magnetic field. The particles are highly sensitive
to the dynamic magnetic field which allows a rapid data acquisition. As a result magnetic particle imaging
benefits from a high temporal resolution and can reach high spatial resolutions. But model-based reconstruction
techniques are still not able to reach the quality of data-based approaches. In the latter case the linear system
function is determined by a time-consuming measurement process which also has negative implications for
the spatial resolution of the reconstructions. Common model approaches are overly simplified leading to
reconstructions of minor quality. We aim for the formulation of a nonlinear parameter identification problem
which is able to deal with model errors while reconstructing a sparse concentration. For this purpose we
use a total least squares approach to simultaneously reconstruct the tracer concentration and deviations in
the system matrix. The starting point is a commonly used model which is investigated with respect to the
simplifying assumptions to derive a formal definition of the problem. Sparsity constraints are introduced for
the concentration function and reconstructions are obtained from publicly available data by minimizing a
Tikhonov-type functional. Data-based as well as model-based reconstructions are computed and improved by
using the total least squares approach.

I. Introduction

In magnetic particle imaging (MPI) the behavior of
superparamagnetic iron oxide nanoparticles is used
to reconstruct the concentration of particles [1]. The
particle’s nonlinear response to the applied dynamic
magnetic field is measured in multiple receive coils.
These signals are used to compute an image reconstruc-
tion. A high temporal resolution and a potentially
high spatial resolution make MPI suitable for several
in-vivo applications. For example, imaging blood flow
or tracking medical instruments [2–4] are possible appli-

cations of MPI without the need for harmful radiation.
Both applications benefit from the fast data acquisi-
tion of MPI but also require computationally efficient
reconstruction methods to allow real time observations.
Mathematical models are advantageous for the devel-
opment of methods which fulfill the latter requirement.

In good approximation the relationship between
particle concentration and measured potential is mod-
eled by a Fredholm integral equation of the first kind.
For some tracers a nonlinear dependence on the concen-
tration is reported for large concentrations [5]. As the
affected concentrations are larger than the concentra-
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tions commonly used in MPI experiments, these effects
are not included in existing models used for imaging.
The challenging part of modeling MPI appropriately
is finding the correct integral kernel, respectively sys-
tem function, which describes the particle behavior.
Existing model-based reconstructions incorporate par-
ticle behavior based on the theory of paramagnetism.
This model was recently analyzed more theoretically
in the context of MPI [6]. Methods based on ideal
magnetic fields [7, 8] and on realistic magnetic fields
[9] are promising but they are not able to reach the
quality of measured system functions. One possible
reason is the particle relaxation which arouses increas-
ing interest in MPI. Ordinary differential equations
are combined with the paramagnetic particle behavior
[10] to deal with this issue. The properties of more
complicated relaxation models are also investigated
with respect to the particle’s behavior. In particular,
relaxation in magnetic fields which are commonly used
in MPI is of interest [11] but have not been applied to
the imaging problem. Relaxation effects are likely to
emerge in magnetic fields belonging to MPI sequences
since they are generated by moving the field free point
(FFP) along a given trajectory rapidly.

In case of a Lissajous trajectory the system matrix
obeys a complex structure. In absence of suitable
models the matrix is usually measured [12, 13] in a
time-consuming measurement process where a "delta"
probe is moved through the field of view. In contrast,
Cartesian sequences [10, 14, 15] allow modeling the
MPI signal by a spatial convolution. Reconstruction
methods based on these sequences are used to obtain
x-space reconstructions [8, 16].

The considered reconstruction in MPI is a linear
ill-posed inverse problem [6, 17] which is solved by
applying Tikhonov regularization [2, 18–20]. Due to
the complexity, the use of iterative solvers is advanta-
geous. In the literature the problem is solved prefer-
ably by using the algebraic reconstruction technique
[2, 18, 21, 22] combined with a nonnegativity constraint
[2]. The Kaczmarz method shows fast convergence due
to the fact that the rows of the system matrix are close
to orthogonal. Tikhonov regularization was applied to
both kinds of system functions, data-based as well as
model-based. Regularization techniques like fused lasso
regularization or other gradient-based methods were re-
cently applied to the data-based MPI problem [14, 23].
Directional total variation was also applied to the MPI
problem in a simulation study [24]. But model-based
approaches have not been investigated with respect to
regularization techniques like introducing, for example,
a sparsity term [25] or a total variation term [26].

However, it is still an open challenge to deal with
the uncertainties in the MPI model. The potential of
methods dealing with measurement errors in the sys-
tem matrix, e.g., total least squares [27], was already

mentioned [20]. But these methods have neither been
applied to the data-based nor to the model-based MPI
problem. Furthermore, the identification of a suitable
mathematical model for MPI which describes the sys-
tem’s behavior for different kinds of FFP trajectories
is still an unsolved problem.

In this work, we investigate an existing model ap-
proach with respect to potential model errors. Based
on that knowledge we formulate a nonlinear problem
to compensate for these model uncertainties. Our goals
are the following: (1) building a formal framework to
define the model assumptions and the resulting prob-
lem; (2) introducing a sparsity constraint for the parti-
cle concentration; (3) a nonlinear problem formulation
based on the total least squares approach considering
errors in the system matrix; and (4) first numerical
comparison of data-based and model-based reconstruc-
tions with sparsity constraints with and without taking
errors in the system matrix into account.

The paper is organized as follows. In Sec. II, the
model-based MPI forward operator is first derived and
the model assumptions are identified. Moreover, spar-
sity constraints are introduced for the discretized prob-
lem. The Tikhonov functional is minimized by an
iterated soft shrinkage algorithm. Then the problem
is extended to a nonlinear problem based on the to-
tal least squares approach. Finally, data-based and
model-based approaches are investigated with respect
to publicly available real data in Sec. III. The paper
concludes with a discussion in Sec. IV.

II. Methods
II.I. Model
Due to the ill-posed nature of the problem, the recon-
struction is highly sensitive to measurement errors or
potential model errors. We thus review a commonly
used physical model for reconstructions with Cartesian-
type and Lissajous-type FFP trajectories to clearly
identify the assumptions in the mathematical model.
For this purpose we follow the formal considerations in
[6, 28]. Note that the present model was already used
in earlier works, e.g., in [7, 8, 16].

The main focus in magnetic particle imaging is de-
termining a spatial concentration distribution of the in-
jected nanoparticles. These nanoparticles are assumed
to be spatially distributed in a field of view which is
given by the open, bounded, and connected set Ω ⊂ Rd,
d = 1, 2, 3. The concentration of nanoparticles is thus
a scalar function which is real-valued and nonnegative,
i.e., the concentration is given by a function c :Rd → R
with c(x) ≥ 0, ∀x ∈ Ω, and supp(c) ⊂ Ω (A1).

We will further consider the following four com-
ponents: the measured signal v, the induced signal
u in the receive coils, the applied magnetic field H,
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and the particle magnetization M. The measured sig-
nal is a time-dependent real-valued potential function
v : (0, T ) → RL, L ∈ N, and 0 < T < ∞. Each ele-
ment of v corresponds to one of the L receive coils.
v is not exactly the induced signal u : (0, T ) → RL
in the receive coils. Due to an analog filter process,
which is implemented to remove the excitation signal,
a filtered version of the induced signal is measured. It
is assumed that this analog filter can be formulated
by a temporal convolution operation with given ker-
nels ak :R → R, k = 1, . . . , L. The transfer functions
are often assumed to be ideal band pass filters which
remove the excitation signal from the induced poten-
tial (A2). Alternatively, the transfer function is fitted
to the measured system function [12]. However, the
resulting signal v is then given by

vk(t) = (ak ∗ uk)(t), t ∈ (0, T ), k = 1, . . . , L, (1)

where uk is the induced potential in the k-th receive
coil. The vector function u is given by the temporal
change of the magnetic flux Φ : (0, T ) → RL. From
Faraday’s law of induction follows

u(t) = − d

dt
Φ(t). (2)

The magnetic flux is given by the law of reciprocity [29]
which relates the magnetic flux to a volume integral,
i.e.,

Φ(t) = µ0

∫
Rd

pR(x)T (M(x, t) + H(x, t)) dx, (3)

where pR :Rd → Rd×L contains the coil sensitivity of
each receive coil in the columns and µ0 is the magnetic
permeability in vacuum. The magnetic flux comprises
two signals. One is induced by the magnetic field
H : Rd × (0, T ) → Rd and the other one is induced
by the magnetization M : Rd × (0, T ) → Rd of the
nanoparticles. In good approximation the applied mag-
netic field is not affected by the magnetization of the
particles (A3). The magnetic field H is thus given by
the applied magnetic field.

In MPI the applied magnetic field is composed by a
static magnetic field HS :Rd → Rd, the selection field,
and a dynamic magnetic field HD : (0, T ) → Rd, the
drive field. The resulting field is their superposition,
i.e.,

H(x, t) = HS(x) + HD(t). (4)

The selection field is assumed to be a linear function
which fulfills ∇x ·HS = 0 for d = 3 and has full rank
(A4). Its transformation matrix is given by GS ∈ Rd×d.
Note that the drive field may also depend on the space
variable x due to the coil sensitivities of the drive
field coils. Assuming homogeneous coil sensitivities
results in a drive field solely depending on the time
variable (A5). With HD ∈ (C1((0, T )))d the implicit

function theorem yields that a unique function p ∈
(C1((0, T )))d exists such that

H(p(t), t) = 0. (5)

The function p is the trajectory of the field free point
and is given by

p(t) = H−1
S (−HD(t)) (6)

such that the magnetic field can be represented in
terms of the trajectory of the FFP, i.e.,

H(x, t) = HS(x)−HS(p(t)) = HS(x− p(t)). (7)

Imaging methodologies are characterized by the tra-
jectory function p, e.g., Cartesian or Lissajous-type
trajectories.

The particle behavior is affected by the applied
magnetic field. In particular, the change of the parti-
cle’s magnetization is caused by the dynamics of the
applied magnetic field. Common modeling approaches
for imaging are based on the assumption that the tem-
poral changes of the magnetic field are sufficiently slow.
For this case the mean magnetic moment vector of the
particles is assumed to be aligned with the magnetic
field vector. Furthermore, nonlinear dependencies on
the particle concentration which may be caused by
particle-particle interactions are assumed to be negli-
gible. These assumptions justify using the theory of
paramagnetism to model the magnetization (A6). The
magnetization is then given by

M(x, t) = c(x)Lα,β(‖H(x, t)‖2) H(x, t)
‖H(x, t)‖2︸ ︷︷ ︸

:=m̄(H(x,t))

(8)

with m̄ : Rd → Rd and the parametrized Langevin
function Lα,β : R→ R defined by

Lα,β(z) = α coth(αβz)− 1
βz

(9)

with physical parameters α, β > 0. They are deter-
mined by the saturation magnetizationMcore of the core
material, the volume of the core Vcore, the temperature
T , and the Boltzmann constant κB, i.e., α = McoreVcore

and β = µ0/(κBT ).
Using the applied magnetic field from Eq. (7) and

the magnetization from Eq. (8), Eq. (3) becomes

Φ(t) = ΨP(p(t)) + ΨE(p(t)) (10)

with contributions from particle and excitation signal
ΨP ,ΨE :Rd → RL given by

ΨP(z) =µ0

∫
Rd

pR(x)T c(x)m̄(HS(x− z)) dx, and

(11)

ΨE(z) =µ0

∫
Rd

pR(x)THS(x− z) dx. (12)
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Assumption (A2) on the transfer functions of the analog
filters implies that (− d

dtΨE;k(p(•)) ∗ ak), k = 1, . . . , L,
are sufficiently small such that they can be neglected.

We additionally assume homogeneous coil sensitiv-
ities for all receive coils, i.e., pR(x) = χΩ(x)R for a
given R ∈ Rd×L and characteristic function χΩ (A7).
It follows that

u(t) = −∇zΨP(p(t))T d
dt

p(t) (13)

with HS(x) = GSx and

∇zΨP(z)T = µ0RT

∫
Rd

c(x)Dz (m̄(HS(x− z)))︸ ︷︷ ︸
=:κ(x−z)

dx

(14)

with supp(c) ⊂ Ω and where κ :Rd → Rd×d is given by

κ(x) =
(

GSxxTGT
S

‖GSx‖22

(
Lα,β(‖GSx‖2)
‖GSx‖2

− d

dz
Lα,β(‖GSx‖2)

)
− Lα,β(‖GSx‖2)

‖GSx‖2
Id

)
GS

(15)

with Id ∈ Rd×d being the identity matrix. Based on
all previous assumptions, the induced potential from
Eq. (2) becomes

u(t) = −µ0RT (c.∗κ)(p(t)) d
dt

p(t) (16)

where .∗ denotes a convolution in each matrix entry.
The theoretical review of the model results in the

following assumptions which are the basis for the sub-
sequent definition of the MPI forward operator.
Assumption 1. A1. The concentration function c :
Rd → R+ fullfils supp(c) ⊂ Ω, where Ω ⊂ Rd
is an open, connected, and bounded set.

A2. The analog filters are represented by a temporal
convolution with the filter kernels ak :R→ R which
remove the excitation signal from the induced po-
tential, i.e., d

dtΨE;k(p(•)) ∗ ak = 0, k = 1, . . . , L.
A3. The magnetic field is independent of the particle

magnetization, i.e., H :Rd × (0, T )→ Rd is given
by the applied magnetic field. This means H is
determined by the selection field HS and the drive
field HD, cf. A4 / A5. It holds H = HS + HD.

A4. The selection field HS :Rd → Rd is linear, fulfills
∇·HS = 0 for d = 3 and its transformation matrix
GS ∈ Rd×d has full rank. The full rank guarantees
the existence of a FFP.

A5. The drive field coils are assumed to have homoge-
neous coil sensitivities such that HD : (0, T )→ Rd
is independent of the spatial variable. It is further
assumed that HD ∈ (C1((0, T )))d.

A6. The magnetization vector M :Rd×(0, T )→ Rd fol-
lows immediately the magnetic field vector H, i.e.,
it exists a function f :Rd × (0, T )→ R such that
M = cf H

‖H‖2
where c is the concentration func-

tion. It is assumed that f is based on the Langevin
function, i.e., f(x, t) = Lα,β(‖H(x, t)‖2).

A7. The receive coils have homogeneous coil sensi-
tivities in Ω, i.e., pR : Rd → Rd×L is given by
pR(x) = χΩ(x)R for R ∈ Rd×L.

Definition 2. Let Ω ⊂ Rd, d ∈ {1, 2, 3} be an open,
connected, and bounded domain. Let R ∈ Rd×L, L ∈ N,
and let rk denote the k-th column of R. Let p ∈
(C1(0, T ))d with 0 < T < ∞ and let Assumption 1
be fulfilled. Then the linear MPI forward operator A
mapping a concentration function c : Rd → R+ to a
vector of potential functions v : (0, T )→ RL is given by

Ac = µ0

((
rTk (c.∗κ)(p(•)) d

dt
p(•)

)
∗ ak

)
k=1,...,L

(17)
with the matrix kernel

κ(x) =
(

GSxxTGT
S

‖GSx‖22

(
Lα,β(‖GSx‖2)
‖GSx‖2

− d

dz
Lα,β(‖GSx‖2)

)
− Lα,β(‖GSx‖2)

‖GSx‖2
Id

)
GS

(18)

and .∗ denoting a convolution in each matrix entry.
This operator is defined as spatial convolutions of

the concentration function and the entries of a matrix
kernel which is sampled along the FFP trajectory. A
linear combination of convolutions with time-dependent
weights given by the time derivative of the trajectory
then determines the measured potential function. The
data acquisition is thus defined by the trajectory p.
The degrees of freedom used for the FFP trajectory
allows a classification of the reconstruction methods
in the MPI literature. Using one degree of freedom
corresponds to a Cartesian trajectory. The problem
can then be formulated by a single spatial convolution.
Using more degrees of freedom for one single trajectory
includes the case of Lissajous trajectories. As stated
before the latter case obeys a complex structure of the
system matrix. This is caused by a temporal change
of the linear combination of spatial convolutions.

II.II. Discrete problem
Let the concentration function c :Rd → R+, supp(c) ⊂
Ω, be an element of a suitable function space X. For
the discretization of the problem we assume a given ba-
sis {φi}i=1,...,NK ⊂ X, NK ∈ N, of a finite-dimensional
subspace XNK ⊂ X. From the application point of
view, piecewise constant functions are a reasonable
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assumption for these basis functions as they may rep-
resent pixels or voxels of the concentration image. A
concentration function is then given by c =

∑NK

i=1 ciφi.
Let {ti}i=1,...,NT with ti = (i − 1)T/(NT − 1) be the
sequence of equidistant sampling points in time. In-
serting both and using a quadrature rule we obtain the
discretized system operator

Smodel,k = ((Aφj)k(ti))i=1,...,NT ;j=1,...,NK
(19)

for the k-th receive coil. Here we assume that φj , j =
1, . . . , NK , are piecewise constant functions on equisized,
pairwise disjoint cubic domains. The discretized system
operator is obtained by using a 3-point Gauss-Legendre
quadrature rule for each space dimension. However
due to the analog filter process in the signal acquisition
chain, the MPI reconstruction problem is formulated
in frequency space by computing the discrete Fourier
transform of the time signal. The Fourier transform
of the system matrix is denoted by Ŝmodel,k ∈ CNF×NK ,
NF ∈ N, in the following.

For given measurements vk ∈ RNT the discretized
MPI problem then becomes finding c ∈ RNK

+ such that

Ŝmodel,kc = v̂k (20)

for all k = 1, . . . , L. In contrast, the data-based linear
problem is formulated by a measured system matrix. In
this case the piecewise constant functions {φi}i=1,...,NK

represent a "delta" probe which is moved over the
entire region Ω [13]. The measured system matrices
Sdata,k, k = 1, . . . , L, respectively their columns, are
then determined by the measured potentials for each
basis function φi, i = 1, . . . , NK. Analogously to the
model-based system function, the Fourier transform
with respect to the time variable is denoted by Ŝdata,k,
k = 1, . . . , L.

II.III. Transfer function
To determine the transfer functions of the analog filters
ak : R → R, k = 1, . . . , L, we follow the approach
presented in [12]. GivenN ∈ N tuples of concentrations
and potential measurements (c(i), v(i)

k ) ∈ RNK × RNT

for each receive coil, the j-th Fourier coefficient âk,j of
the transfer function is determined by

âk,j = arg mina∈C
N∑
i=1
‖v̂(i)
k,j − a(Ŝmodel,kc

(i))j‖2

=
∑N
i=1 v̂

(i)
k,j(Ŝmodel,kc(i))j∑N

i=1 |(Ŝmodel,kc(i))j |2
. (21)

Here, only data tuples with tracer concentration lo-
cated in the field of view of the drive field were used.

II.IV. Sparse reconstruction
In MPI the reconstruction of the concentration is often
obtained by minimizing a Tikhonov functional with
an l2-penalty term. One of the main drawbacks of
this standard approach is that large regularization pa-
rameters cause overly smooth reconstructions of the
concentration. Including more sophisticated regulariza-
tion approaches, respectively a priori information, can
improve the reconstruction of the concentration which
was recently shown by using a fused lasso regularization
[23].

We assume that the solution of the problem is sparse
in the given basis {φi}i=1,...,NK , i.e., the coefficient
vector c is sparse. A sparse solution c ∈ RNK

+ is obtained
from weighted measurements vk ∈ RNT , k = 1, . . . , L,
by minimizing the following Tikhonov type functional

Jγ(c) = 1
2

L∑
k=1
‖Wmodel,kŜmodel,kc− v̂k‖2 +γ‖c‖1 (22)

where γ > 0 weights the data fidelity term with
respect to the l1-penalty term. Following the ap-
proach in [18], the modeled system matrix is weighted
with respect to the row energy of the system matrix,
i.e., Wmodel,k ∈ RNF×NF is a diagonal matrix with
1/Wmodel,k;i,i =

√∑NK

j=1 |(Ŝmodel,k)i,j |2, i = 1, . . . , NF.
Analogously, we weight the measured data using
Wdata;k ∈ RNF×NF , k = 1, . . . , L, obtained from a
measured system matrix. This weighting potentially
reduces the influence of systematic artifacts not cap-
tured by the model. The functional Jγ is minimized
by using an iterated soft shrinkage algorithm [25, 30],
where the concentration vector is projected by PRNK

+

onto the convex set of nonnegative real-valued vec-
tors in each iteration. Considering the concatenated
weighted system matrices Ŝ ∈ CLNF×NK and concate-
nated weighted measurements v̂ ∈ CLNF of all receive
coils, the iteration becomes

ci+1 = PRNK
+

(gγτ (ci − τ Ŝ∗(Ŝci − v̂))) (23)

where gδ : CNK → CNK , δ ≥ 0, is the soft shrinkage
operator

gδ(x) =
({

xi

|xi| (|xi| − δ) if |xi| ≥ δ
0 else.

)
i=1,...,NK

.

(24)
In each iteration the step size τ is decreased geomet-
rically until a weak monotonicity criterion is fulfilled.
For a detailed description we refer to the algorithm in
[31, 32] which has been adapted to the linear case.

II.V. Total least squares with sparsity
Minimizing the functional Jγ in Eq. (22) implicitly as-
sumes noise solely in the measurements. Because of the
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(a) Tikhonov reconstruction,
γ = 0.1 × 10−6

(b) Sparse reconstruction,
γ = 0.1 × 100

(c) Tikhonov & TLS reconstruction,
γ = 0.1 × 10−6

(d) Sparse & TLS reconstruction,
γ = 0.1 × 100

Figure 1: Data-based reconstructions of the concentration of a 5 point phantom provided by [33]. Reconstructions are
obtained without TLS (a,b) and with TLS (c,d) for Tikhonov regularization (a,c) and for sparsity regularization (b,d).

potential model errors and the noise level in measured
system matrices, it is reasonable to allow for deviations
in the system matrix during the reconstruction pro-
cess. The following consideration is based on the total
least squares approach [27] where an error in the linear
operator is assumed. Using the concatenated problem
formulation from Sec. II.IV, the extended problem be-
comes finding the concentration function c ∈ RNK

+ and
a deviation matrix δŜ ∈ CLNF×NK which fulfill

(Ŝ + δŜ)c = v̂. (25)

The simultaneous reconstruction of the concentration
and the deviation matrix is a nonlinear inverse problem.
A solution to the problem is obtained by minimizing
the following Tikhonov-type functional

JTLS
γ (c, δŜ) = 1

2‖(Ŝ + δŜ)c− v̂‖2 + 1
2‖δŜ‖

2
F + γ‖c‖1

(26)
where sparseness of the concentration is assumed and
where ‖ • ‖F denotes the Frobenius norm. The func-
tional is minimized by using an alternating algorithm

[34] resulting in the following iteration steps:

ci+1 = arg minc∈RN
+
JTLS
γ (δŜi, c) (27)

δŜi+1 = arg minδŜ∈CLNF ×NK J
TLS
γ (δŜ, ci+1)

= 1
1 + ‖ci+1‖2

(v̂ − Ŝci+1)(ci+1)T . (28)

The first step is performed by using the iterated soft
shrinkage algorithm from Sec. II.IV. The explicit for-
mulation in the second step results directly from the
normal equation.

III. Results
For the numerical tests we use real data without
background correction of an FFP scanner provided
by the Github project page of [33]. A 2D FFP tra-
jectory is used and data is acquired with three re-
ceive coils oriented in x-, y-, and z-direction, i.e.,
here d = L = 3. The measurements are obtained
with a cosine excitation with drive field amplitudes of
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Parameter Value
Magnetic permeability µ0 4π × 10−7 H/m
Boltzmann constant κB 1.38064852

×10−23 J/K
Temperature Ttemp 293 K
Coil sensitivity R I3
Particle diameter D 30 nm
Sat. magnetization Mcore 0.6 T/µ0
Excitation frequencies fx 24.51 kHz

fy 26.04 kHz
Excitation amplitudes Ax 14 mT/µ0

Ay 14 mT/µ0
Gradient strength Gx −1.25 T/m/µ0

Gy −1.25 T/m/µ0
Gz 2.5 T/m/µ0

Table 1: Model parameters used for the model-based recon-
struction in Fig. 2.

14 mT/µ0 in both excitation directions and a gradient
strength of Gx = Gy = −1.25 T/m/µ0 and accord-
ingly Gz = 2.5 T/m/µ0. The Lissajous measurement
circle with a repetition time of T = 0.6528 ms is gen-
erated by a base frequency of 2.5 MHz and frequency
dividers 102 and 96. The size of the field of view is
44 mm× 44 mm× 1 mm. The field of view is sampled
at 44×44×1 = 1936 positions such that the system ma-
trix has 1936 columns. The time signals were sampled
with 2.5 MHz resulting in NT = 1632 discrete time
points. Frequencies larger than 30 kHz and smaller
than 1.25 MHz have been used for the reconstruction
resulting in a number of 797 rows in the system matrix
for each receive coil.

The parameters used for the model-based system
matrix are summarized in Tab. 1. With these param-
eters the selection field HS(x) = GSx is given by the
diagonal matrix GS ∈ R3×3 with the gradient strengths
Gx, Gy, and Gz on the diagonal. The drive field is mod-
eled by HD(t) = (Ax cos(fxt2π),−Ay cos(fyt2π), 0)T .
The measured system function, which is also provided
by [33], is used to compute the transfer functions âk,
k = 1, 2, 3, from N = 484 data tuples as described
in Sec. II.III. In case of fitting the transfer function
it is sufficient to assume unit vectors for the receive
coil sensitivities as the value is already included in the
fitted transfer function. The iterated soft shrinkage al-
gorithm from Sec. II.IV and the alternating algorithm
from Sec. II.V are used to compute reconstructions
from the data-based as well as from the model-based
approach. The regularization parameters are chosen by
visual inspection of the reconstructed images. Equal
parameter values are used for the reconstructions with
and without considering the deviation in the system
matrix.

A five point phantom consisting of glass capillary

with a diameter of 1.1 mm filled with Resovist with
a concentration of 0.5 mol/l provided by the Github
project page of [33] is reconstructed. The nonneg-
ative Tikhonov regularization is computed with the
Kaczmarz implementation which is also provided with
the data. The reconstructions are computed with one
iteration as suggested in the example script of [33].

The data-based reconstructions are shown in Fig. 1.
We obtain smoothed reconstructions of the five points
which is typical for Tikhonov regularization, cf.
Fig. 1(a). In contrast the minimization with sparsity
constraints is able to obtain a better localization of the
tracer. The difference in concentration values depends
strongly on the choice of the regularization parameter.
Signal energy from regions filled with tracer which are
not included in the used system matrix may cause a
larger concentration value than the expected 0.5 mol/l.
Using the total least squares approach further improves
the localization in the sparse reconstruction for the
data-based system matrices, cf. Fig. 1(d). In case
of Tikhonov regularization the concentration values
increase slightly.

By using the parameters in Tab. 1 and the data-
based weighting of the data, we were able to obtain
the model-based reconstruction presented in Fig. 2.
The ratio between the data-based and the model-based
weighting is illustrated in Fig. 3 for all receive coils.
For the receive coils in x- and y-direction a much
smaller ratio can be found on the higher harmonics
of the respective drive field frequency. The smaller
the ratio the more is the measured data rescaled in
these frequency components. The scaling reduces the
influence of artifacts in these frequency components in
the reconstruction process.

As can be seen in Fig. 2(a) using Tikhonov regu-
larization results in a reconstruction of the five dots
with additional background artifacts. Using the to-
tal least squares approach in this setup increases the
contrast in concentration values but background arti-
facts are not reduced. The small number of iterations
in the Kaczmarcz algorithm which does not guaran-
tee sufficient convergence and large artifacts in the
measurements are possible reasons for the remaining
artifacts in the reconstruction. In contrast to the data-
based reconstruction with Tikhonov regularization, the
sparse model-based reconstruction in Fig. 2(b) has a
similar quality in terms of localization of the dots. Fur-
thermore the model-based sparse reconstruction is less
smooth. By using the total least squares approach in
Fig. 2(d) the localization of the dots can be further
improved such that the localization is similar in qual-
ity compared to the data-based sparse reconstruction.
The loss in contrast might be due to a regularization
parameter chosen too large.
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(a) Tikhonov reconstruction,
γ = 0.1 × 10−6

(b) Sparse reconstruction,
γ = 0.15 × 101

(c) Tikhonov & TLS reconstruction,
γ = 0.1 × 10−6

(d) Sparse & TLS reconstruction,
γ = 0.15 × 101

Figure 2: Model-based reconstructions of the concentration of a 5 point phantom provided by [33]. Reconstructions are
obtained without TLS (a,b) and with TLS (c,d) for Tikhonov regularization (a,c) and for sparsity regularization (b,d).

IV. Discussion

In the present work we include the additional degree
of freedom of model errors which may prevent the use
of model-based approaches in MPI. The total least
squares investigation is accompanied by the incorpo-
ration of sparsity constraints in the reconstruction of
the concentration. We are able to reconstruct sparse
particle concentrations from real data with data-based
and model-based system functions. By incorporating
the sparseness assumption, the reconstruction obtained
from the data-based and model-based system functions
can be improved. The structure of the model-based
results look promising in the case of sparse reconstruc-
tions. The artifacts in the Tikhonov reconstructions
might be due to a systematic behavior of the system
which is not covered by the model, e.g., drive field
artifacts. The choice of the regularization parame-
ter strongly influences the reconstructed concentration
values. Aiming for stable model-based reconstruction
techniques which are able to deal with uncertainty to
some degree is advantageous for MPI since a sufficient

model is still missing.
To obtain a reasonable model-based reconstruction

we used fitted transfer functions and a data-based
weighting of the data which is critical with respect to
the evaluation of the assumed model and the interpre-
tation of the reconstructed system matrix deviations.
Transfer functions which are fitted to measured system
functions can use the additional degree of freedom to
compensate potential drawbacks of the assumed model.
As a consequence the implementation of the drive field
and/or the assumption (A6) regarding the dynamics of
the magnetic moments of the particles may be incorrect.
Artifacts in the frequency bands which correspond to
higher harmonics of the excitation frequencies are not
predicted by the assumed model which can be seen
in the ratio of model- and data-based weights. The
proposed weighting of the system function may reduce
the model error as the influence in the reconstruction
is suppressed. This observation raises the question
whether assumption (A2) holds strictly true.

The present work is the basis for several directions
of research. The model-based approach with sparsity
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(a) Receive coil x-direction

(b) Receive coil y-direction

(c) Receive coil z-direction

Figure 3: The ratio between the data-based weightsWdata,k

and the model-based weights Wmodel,k, k = 1, . . . , 3, for
receive coils in x-, y-, and z-direction are illustrated. Ver-
tical lines highlight higher harmonics of the drive field
frequencies fx (dotted) and fy (dashed).

constraints and model uncertainty used in this work
should be investigated on larger data sets and without
fitting the transfer functions of the analog filters in
the signal acquisition chain. For this purpose more
efficient algorithms for the sparse reconstructions, e.g.,
FISTA [35], should be incorporated. Another direction
of research is the solution of further nonlinear prob-
lems aiming for a deeper undersanding of the model
errors. For example, considering deviations in the
magnetic field vector in the used model might be of

interest to identify potentially emerging relaxation ef-
fects. The nonlinear nature of these problems requires
a theoretical analysis and a subsequent development
of efficient solvers as well as the mathematical anal-
ysis of the forward operator given by the model. A
successful validation of the presented approach would
be advantageous for applications in MPI, e.g., imaging
blood flow or tracking medical instruments [2–4]. The
model-based approach allows further investigation of
memory efficient representations of the system opera-
tor [36, 37] particularly for three-dimensional imaging
applications.
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