& Infinite Science
e Publishing

International Journal on Magnetic Particle Imaging
Vol 10, No 1, Suppl 1, Article ID 2403010, 4 Pages

Proceedings Article

Extension of the Kaczmarz algorithm with a
deep plug-and-play regularizer

a,b,

@b, Paul JiirR “V. Mirco Grosser

“b. Tobias Knopp

@b. Niklas Hackelberg

a,b

Artyom Tsanda
Martin Moddel

“Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
"Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
*Corresponding author, email: artyom.tsanda@tuhh.de

(© 2024 Tsanda et al.; licensee Infinite Science Publishing GmbH

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Abstract

The Kaczmarz algorithm is widely used for image reconstruction in magnetic particle imaging (MPI) because it
converges rapidly and provides good image quality even after a few iterations. It is often combined with Tikhonov
regularization to cope with noisy measurements and the ill-posed nature of the imaging problem. In this abstract,
we propose to combine the Kaczmarz method with a plug-and-play (PnP) denoiser for regularization, which can
provide more specific prior knowledge than handcrafted priors. Using measurement data of a spiral phantom, we
show that Kaczmarz-PnP yields excellent image quality, while speeding up the already fast convergence. Since the
PnP denoiser is not coupled to the imaging operator, the Kaczmarz-PnP method is very generic and can be used for

image reconstruction independently of the measurement sequence and MPI tracer type.

. Introduction

Image reconstruction in magnetic particle imaging (MPI)
is a challenging task because the reconstruction prob-
lem is ill-posed, and thus noise in the measurements
is strongly amplified if not taken into account during
reconstruction.

The standard approach to cope with measurement
noise and system imperfections is to use a regularized
least-squares approach, where the regularization func-
tion allows to incorporate prior knowledge about the
particle concentration. Popular priors are the /, prior
[1] and the sparsity promoting /; prior. The latter is of-
ten combined with a total variation prior [2, 3] to obtain
smooth images. In case of dense objects, one can also
apply the [; -prior in the wavelet domain [4]. As these pri-
ors penalize image characteristics rather indirectly and
often neglect many of the structural correlations present
in MPI images, their denoising capabilities are limited.
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In recent publications, the limitations of handcrafted
regularizers were addressed using deep neural networks
(DNN). These enable the incorporation of prior knowl-
edge, e.g., by using a post-processing network [5, 6] or
a deep image prior [7]. Another highly promising ap-
proach is to replace the proximal map of classical reg-
ularization functions by a learned denoiser based on a
DNN. In MP], this plug-and-play (PnP) approach was
first combined with the alternating direction method
of multipliers (ADMM) [8, 9]. Later on, this approach
was further improved by incorporating a pre-trained de-
noiser and a learned data consistency condition into the
optimization pipeline, which was then trained as a deep
equilibrium model [10]. In both cases, the results demon-
strated superior image quality but also relied on a large
number of iterations to achieve convergence.

In this work, we propose to combine the PnP ap-
proach with the widely adopted Kaczmarz method for
MPI image reconstruction. Notably, the Kaczmarz
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method is known to converge rapidly, due to the rows
of the MPI system matrix being close to orthogonal [1].
The results of our experiments indicate that the Kacz-
marz method retains its fast convergence when com-
bined with a PnP denoiser. At the same time, the image
quality provided by the Kaczmarz-PnP method is on par
with that obtained by our implementation of the ADMM-
PnP method proposed in [8].

Il. Methods and Materials

The MPI imaging equation can be formulated in discrete
form as

1)

where § € CM*V is the system matrix, u € CM are the
measurements, 7 € CM is noise and ¢ € C" is the un-
known particle concentration that we want to recon-
struct. Usually, several operations, such as a weighting
matrix and frequency filtering, are applied to the imaging
equation prior to image reconstruction, and we assume
them to be already included in (1).

The Kaczmarz algorithm allows solving linear systems
of equations using a row-wise fixed-point iteration based
on the successive over relaxation method [1]. To solve
ill-posed problems, one can introduce /,-regularization
and apply the Kaczmarz iteration to the equation

(s MIM)(Z) —u,

which leads to the iteration displayed in lines 3-6 of Al-
gorithm 1. Furthermore, additional regularization in the
form of projections or a more general proximal mapping
can be applied after each outer Kaczmarz iteration [4].

Motivated by recent work [8], we suggest to apply a
Gaussian denoiser fPP(c) : RN — RY after each outer
iteration. As the particle concentration may vary signifi-
cantly, we scale it to [0, 1] using a min-max transforma-
tion. An overview of the complete Kaczmarz-PnP algo-
rithm is provided in Algorithm 1.

We use 2D measurements of a spiral phantom for
reconstruction. Frequencies are filtered with an SNR
threshold of 1.5 and weighted to realize noise whiten-
ing [11]. We compare Kaczmarz-PnP with the regular
I,-regularized Kaczmarz method and with a ADMM-PnP.
The latter is similar to the one from [8] but penalizes
the commonly used /,-norm of the residual to enforce
data consistency. For Kaczmarz-PnP we set the Tikhonov
regularization parameter A to zero, for Kaczmarz-1, A
equals 0.05. We use the original PnP denoiser [8], which
was trained to denoise simulated vessel phantoms and
is agnostic of the given reconstruction algorithm. All re-
constructions used 150 iterations and were performed
using the Julia package RegularizedLeastSquares.jl'.

Sc+m=u

2)

Ihttps://github.com/JulialmageRecon/
RegularizedLeastSquares. jl.
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Algorithm 1 Pseudo code of the Kaczmarz-PnP algorithm
applied to the regularized least-squares problem.

Input: SeCM*N, system matrix

uesCM, measurements

cYech, initial guess

Niter e N, number of iterations

frp, pretrained PnP denoiser

S, min-max scaling

A20 regularization parameters
1: v=0

2. for1=1,2,...,Ni*r do
3: fork=1,2...., M do
1
Uk—(s}kc,c(l))—ﬁ Vi 4
lIsills+2 k
1
uk—(s’,"c,c(”)—)tf Vi
llsill2+ 2

4 cWe—ch+

S

A

5: Vi — Vi +

6: end for

7. cWeP(c?) projection onto R*
8 csT(rP(s(c"))

9: end for

Output: ¢V eCN solution

To quantitatively analyze convergence properties,
we calculate the normalized root mean squared error
(NRMSE) between each intermediate and the final ¢. We
consider a method to be converged at a certain itera-
tion if the corresponding value of the NRMSE is less than
£ = 1072, As the ground truth is not available, the de-
scribed method does not take into account the accuracy
of the final reconstruction for the convergence analysis.
Additionally, we provide visual results along with a photo
of the phantom.

The iterative progress of the considered algorithms is
shown exemplarily for the spiral phantom in Figure 1.
Both quantitative and visual results indicate faster con-
vergence for the Kaczmarz-PnP algorithm which con-
verges already after the fourth iteration. The final image
produced by Kaczmarz PnP demonstrates less artifacts
compared to Kaczmarz-I,. The results of Kaczmarz-PnP
and ADMM-PnP differ at the upper-left corner of the
phantom which is missing for Kaczmarz methods. The
ADMM-PnP leads to a more homogeneous particle con-
centration along the spiral but also shows implausible
particle concentrations in the upper left corner. The cen-
ter of the spiral is reconstructed accurately, demonstrat-
ing comparable image quality for both algorithms.

Results

(© 2024 Infinite Science Publishing
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Figure 1: The progress of image reconstruction. A spiral phantom was reconstructed using Kaczmarz-1,, Kaczmarz-PnP and
ADMM-PnP algorithms. The upper plot shows the NRMSE of each iteration compared to the final iteration along with the
defined convergence criterion (¢). The intermediate results of image reconstruction after iterations 2, 4, 8, 32 and 150 are showed
below. The images are normalized by the corresponding maximum concentration. The drive-field field of view is marked by

dashed boxes.

IV. Discussion and Conclusion

In this work, we propose to combine the Kaczmarz algo-
rithm with a plug-and-play denoiser. Our results indicate
that this combination is very effective and enables high-
quality image reconstruction while requiring only a few
iterations for convergence.

Nevertheless, we note that our experiments only show
the methods potential in a very limited setting. A more
rigorous evaluation on different datasets and a compari-
son to a larger set of methods (including PP-MPI [8] and
DEQ-MPI [8]) is needed to more precisely delineate the
strengths and limitations of the Kaczmarz-PnP method.
Additionally, the min-max scaling introduced in this pa-
per to address the issue of variable particle concentration
may not be optimal for certain applications that demand
consistency between independent reconstructions, such
as time-series data of a particle bolus. For these cases, the
scaling should be global, i.e., shared across reconstruc-
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tions. Finally, a further improvement might be achiev-
able by studying different denoiser architectures.
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