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Abstract
The implementation of human-scale magnetic particle imaging is significantly restricted by the nonlinear growth
in power with the size of the field-generating coils. To address this issue, we developed anatomically optimized
shapes with a reduced internal volume for the head drive field system using a wide range of anatomical data as
a reference. On the base of designed complex bodies, we synthesized windings for two orthogonal coils with the
help of the stream functions approach. The resulting coil set was compared to the state-of-the-art solenoid/saddle
coil pair and showed a reduction in power consumption by a factor of 1.58 in numerical simulations. We also built
a prototype of the designed coils using additive manufacturing and used it to receive the first signals from the
nanoparticles.

I. Introduction

The history of the development of magnetic particle
imaging (MPI) as a tomographic technique started in
2005 [1]. However, so far only a few prototypes have been
shown that are feasible for human use [2–5]. One of the
main reasons for this is the nonlinear (at least quadratic)
dependence of power on the size of the field-generating
coils. This ratio imposes quite strong restrictions on hard-
ware and leads to enormous technical complexity when
the size of the field of view reaches dimensions of large
body regions [2]. From this perspective, brain diagnos-
tics appears to be one of the most promising areas where
hardware optimization and proper selection of imaging
tasks could help to stay at reasonable power levels. Con-
sidering the current clinical needs, a mobile head scan-
ner for stroke detection will be in high demand. Cerebral
perfusion measurements do not require high spatial res-
olution but can get full benefits from the imaging speed
granted by MPI technology.

It has been demonstrated previously that it is pos-
sible to measure blood perfusion and detect the stroke
in a simplified brain simulator using an MPI scanner
with a small footprint [5]. In this work, we perform the
optimization of the orthogonal set of drive field coils
for an upgraded version of this system. To increase the
field-to-current ratio, as well as reduce eddy currents in
the conducting surfaces surrounding the coils, we used
anatomical information to put coil conductors as close
to the region of interest as possible.

II. Material and methods
To determine the minimum acceptable dimensions of
the internal volume, we collected information from four
open sources with statistical data on head sizes [6–8].
Three main parameters were considered: head width,
head breadth, and head circumference (Fig. 1(a)).
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Figure 1: (a) A base head model with main dimensions. The
yellow line shows the position of circumference measurements.
Designed mesh surfaces are depicted together with synthesized
coil windings on top of them forming first (b) and second (c)
drive field coils.

The resulting head model has a width of 213 mm,
a breadth of 167 mm, and a circumference of 601 mm
which suits the range of XL/XXL helmet sizes. Selected
values of width and breadth correspond to the 99th
percentile of the dimensions described in [6], larger
than mean values represented in databases SizeChina
and CAESAR [7] and equal to the dimensions of the
’Large_symmetry’ digital head model from NIOSH Digital
Headform set based on [8]. By using the generated model
as a reference, we designed two surfaces that closely fol-
low the anatomy of the head and neck. Due to the reduc-
tion of the internal volume we decided to open the face
of the patient to avoid possible claustrophobic effects
and make the system more accessible for clinicians. We
performed coil synthesis by using the open-source soft-
ware package ’bfieldtools’ based on a stream function
approach [9, 10]. As the main optimization criteria, we
set the minimization of ohmic losses together with the
constraints of 10% for a field inhomogeneity in the spher-
ical volume with a diameter of 120 mm. The directions
of the main fields for both coils were also varied. After
a series of optimizations, the field direction for the first
layer coil was chosen to be 20 degrees, and for the second
layer coil to be 110 degrees relative to the x-axis in the xy
plane. The final coil windings together with the return
path wires are shown in Fig. 1(b,c). After the model was
complete, we carried out numerical simulations using
COMSOL (COMSOL AB, Stockholm, Sweden) software
with realistic values of the currents driving both coils (162
A, 231 A, 25 kHz) to achieve a 6 mT/µ0 average fields in-
side the spherical volume. The simulated magnetic flux
density for both coils is depicted in Fig. 2. To compare
the performance with the state-of-the-art design, we also
simulated a pair of solenoid/saddle coils, with geometric

Figure 2: Numerical simulations of (a) first and (b) second
layer of the synthesized coil set without shielding. The central
plane (z=0) is depicted. The black circle shows the area where
field uniformity was preserved by the optimization algorithm.

Figure 3: Models of coil pairs used in simulations. State-of-the-
art solenoid/saddle coil pair (a) and power-optimized anatom-
ically adapted coil pair (b). Both coil sets are positioned inside
identical copper housings.

parameters close to those in [5] (Fig. 3). The prototype of
the coil set was built on the base of 3d printed parts and
winded by using ten parallel RUPALIT V155 2000x0.05
mm (Rudolph Pack GmbH, Germany) Litz wires for each
coil. During the first experiments, 176 A 25 kHz current
was applied to the first layer coil to create a drive field for
particle excitation.

III. Results and discussion
To test the performance in numerical simulations, we
found current values for each pair of coils that would
create an average field of 6 mT/µ0 inside a sphere with
a diameter of 120 mm. After that losses in coils conduc-
tors and shielding surfaces were calculated. The new
coils showed a reduction in total power consumption
by 1.58 times, while losses in the shields were reduced
by 1.8 times. Preliminary testing of the unshielded built
prototype shows good agreement between simulations
and measurements for both coils producing an average
field of 6/µ0 mT: 176 A/272 A measured and 162 A/231
A simulated, respectively. To test out the capabilities of
the drive field, we inserted a test sample filled with 5 ml
of Synomag-D (Partikeltechnologie GmbH, Germany)
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Figure 4: Assembled prototype of a set of power-optimized
drive field coils. The spectrum analyzer shows particle signals
in a range of 15-400 kHz.

inside the coils. The experimental setup is depicted in
Fig. 4. Particle signals were detected in the frequency
range from 15 to 400 kHz using a spectrum analyzer. A
homebuilt gradiometric coil was used as a receiver.

IV. Conclusions
The developed anatomically adapted drive field
coils have a clear advantage over state-of-the-art
solenoid/saddle design in terms of power efficiency.
By using anatomical information during development,
we were not only able to reduce power consumption,
but also improve the ergonomics of the device. These
factors could be crucial for future clinical applications,
especially if MPI systems are planned to be mobile or
installed in locations with limited power resources.
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