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Abstract

Modelling magnetization dynamics of magnetic nanoparticles (MNPs) is crucial to understand and predict their
signal response in magnetic particle imaging (MPI). Coupled Brown-Néel rotation model expresses MNP mag-
netization as a system of ordinary differential equations (ODEs). However, numerical solution of these ODEs
can be computationally intensive and time consuming using classical solvers. In this work, we propose a neural
solver that utilizes a Fourier Neural Operator (FNO) to speed up the computation time for the coupled Brown-Néel
rotation model. We show that the FNO model provides high signal fidelity with 5 orders of magnitude acceleration

in computation time.

. Introduction

Magnetic nanoparticles (MNPs) used in magnetic parti-
cle imaging (MPI) align with the externally applied mag-
netic field via two different relaxation processes: Brown
rotation and Néel rotation. In the Brownian process,
MNPs physically rotate to align their magnetic moments
with the applied field, whereas in the Néel process, the
magnetic moments internally rotate to align with the
field [1]. These rotations occur simultaneously in a cou-
pled fashion.

It is crucial to accurately model the magnetization
dynamics of MNPs to have a better understanding of
their behavior under different environmental settings.
A previous study presented mathematical modeling of
the coupled Brown-Néel rotation, expressing it as a sys-
tem of ordinary differential equations (ODEs) [2]. This
coupled model can be used for predicting the response
of MNPs in different environmental settings, which can
help determine the optimal operating settings for vis-
cosity mapping and temperature mapping applications
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of MPI [3-5]. For this coupled model, numerical solu-
tions of the ODEs for different sets of MNP parameters
were previously utilized for MNP signal prediction via a
model-based dictionary approach [6]. However, numeri-
cal solution of these ODEs are computationally intensive
and time consuming.

A recent study showed that the non-coupled, Néel
rotation based Fokker-Planck equation can be solved by
using Fourier Neural operators (FNOs) to speed up the
computation time [7]. Here, we propose a FNO model for
the coupled Brown-Néel rotation model for an extensive
set of MNP and environmental parameters. We demon-
strate that when compared to a standard variable-step
variable-order (VSVO) solver, the FNO model provides
over 5 orders of magnitude reduction in computation
time, while maintaining high fidelity solutions.
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Il. Methods and Materials

I1.I. Fourier Neural Operator

Unlike other neural network architectures, where map-
ping is addressed between finite Euclidean spaces, the
FNO performs a mapping between function spaces [8].
In other words, FNO enables the characterization of
the mathematical model, instead of a direct input out-
put relation. Hence, if the mapped function spaces
are sampled densely enough, the FNO can encapsu-
late the natural interaction between function spaces
[9]. As shown in Fig. 1a, there are multiple Fourier lay-
ers in the full network architecture, placed sequentially.
Each Fourier layer combines properties of time- and
frequency-domain features. As shown in Fig. 1b, in the
first branch of the Fourier layer, a discrete time fast
Fourier transform (FFT) of the input is taken. Then, a
frequency-domain low pass filter is applied by R for har-
monic selection and linear transformation. The cut-off
frequency of the applied filter (k,,,) is a hyper-parameter
of the FNO model, and is chosen as 20 to process the first
20 harmonics. The result is converted to time domain
by inverse FFT. The second branch of the Fourier layer
performs a linear transformation, W, in time domain.
The outputs of the two branches are then added and
passed through a non-linear activation function, A. In
our architecture, we utilized L= 6 Fourier layers.

I1.11. Parameter Space Construction

In this work, we assumed a 1D drive field along the z-
direction, as in the case of a magnetic particle spectrom-
eter (MPS) setup. Selection fields or focus fields of an
MPI scanner were not incorporated. We considered nine
of the parameters (N, = 9) within the coupled Brown-
Néel rotation model. Our parameter space includes both
explicit and implicit parameters. The applied field (B;)
and time values of the applied field (¢) are implicit pa-
rameters. On the other hand, viscosity (1), amplitude
(By) and frequency (f) of the applied drive field (DF),
temperature (7T'), uniaxial magnetic anisotropy constant
(K), particle core diameter (d.), and hydrodynamic par-
ticle diameter (d;) are the explicit parameters. We as-
sumed that each parameter had a uniform distribution
with a certain range and a certain step size, as listed in Ta-
ble 1. The intervals were chosen to be as comprehensive
as possible to construct a model that works for a wide
set of parameters. Saturation magnetization and Gilbert
damping constant were kept constant at 360 kA/m and
0.1 respectively.

Each of the training samples was assumed to be
drawn in an independent and identically distributed
(i.i.d.) fashion. The total number of training samples was
N=10,000 (i.e., 10,000 different combinations of the 7 pa-
rameters listed in Table 1), whereas the validation and
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Table 1: Explicit parameters of the parameter space. Each pa-
rameter was assumed to be drawn from a uniform distribution
of range and step size given in the table.

Parameter Range Step Size

B, (5,25) mT 1 mT

f (250,10000) Hz 1Hz

K (0,10000) J/m? 1J/m3

T (25,45)°C 1°C

d. (10,30) nm 1nm
dy (25,130) nm 1 nm

n (0.89,15.33) mPa.s  0.01 mPa.s

test sets contained 1000 samples each. Each B; € RN:*!
contained N, = 200 time points per period of the DF
(wherei=1,2 ... N). Each sample from sample space
was stored in a matrix a;, where columns represented
both implicit and explicit parameters. For the 7 explicit
parameters that were kept constant through time, we
generated vectors of size 1y, ;. Then, we multiplied with
the corresponding parameter values before placing these
vectors into the matrix a; € RV*M,

I1.11l. Problem Formulation

The network was trained using an £, loss defined as

o ly=91?
Ly ==

where y € RV:*! represents the ground-truth signal vec-
tor obtained from VSVO solver and y € RV-*! represents
the signal vector predicted by the network. Adam opti-
mizer was used with a weight decay coefficient of 10~
to prevent over-fitting. A learning rate scheduler was
utilized for robust learning. The associated hyperparam-
eters were step size = 150, ¥ = 0.5, and learning rate ¢ =
0.001. When the epoch count reached multiples of the
step size, the learning rate was updated as y - . Reducing
the learning rate helped resolve the finer details in the
predicted signal. The number of epochs was set to 1500.

Normally, the output of the coupled Brown-Néel rota-
tion ODEs is the magnetic moment of the MNP. However,
we applied a direct mapping to its time derivative to di-
rectly access the MNP signal. We also divided each signal
with the applied field amplitude and frequency for sig-
nal normalization. This normalization step restricts the
amplitude of the predicted signal to a narrower range,
facilitating the training of the network. Each signal vec-
tor was stored in y; € RM*!, Hence, our training pair was
(a;,y;) where i=1,2, ..., N.
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Figure 1: Architecture of the FNO. (a) The overall network architecture incorporates multiple, sequentially placed Fourier layers.
(b) Each Fourier layer combines time- and frequency-domain features. L and P represent the fully connected layers. a is lifted to
higher dimension and projected onto the lower dimension by these layers, respectively. R represents the frequency domain low
pass filter, W denotes linear transformation, and % denotes the non-linear activation function.

Table 2: Computation time for the test samples for VSVO solver
and FNO model, and NRMSE for FNO with respect to VSVO.
Median (25/"-75'" percentile) values are listed.

Method Computation Time (sec) NRMSE (%)

VSVO 504.38 (240.28-737.12) -
FNO 0.0026 (0.0025-0.0027) 0.61 (0.36-1.30)

I1.1IV. Implementation Details

The VSVO solver was implemented using odel5s built-
in function of MATLAB [10]. This implementation was
performed on a CPU (Intel x86-64) due to the sequen-
tial nature of the algorithm. The FNO model was imple-
mented in Python with the Pytorch deep learning frame-
work. The training of the model was performed on a GPU
(NVIDIA GeForce GTX 1050 Ti). To enable comparison
of computation times, the inference for the FNO model
was performed on the same CPU as the VSVO solver.

For quantitative assessments, we used the normal-
ized root mean square error (NRMSE) defined as:

ly =3l

NRMSE =
/N, (max(y)—min(y))

I1l. Results and Discussion

Figure 2 shows four representative results from the test
set, comparing the signal predicted by the FNO model
with the ground-truth signal from VSVO solver. These
results demonstrate that the FNO model successfully
captures the subtle variations in the MNP signals for a
wide range of parameters. For these 4 cases, the mean
computation times were 419.54 sec and 0.0027 sec for
VSVO solver and FNO model, respectively. The mean
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Figure 2: Four representative results for the FNO model,
compared with the ground-truth signals from VSVO solver.
(a) Results for f=588 Hz, B,=7 mT, K=4855 J/m3, T=26 °C,
1n=9.67 mPa.s, d.=14 nm, d,=41 nm. (b) Results for
f=2931 Hz, B,=24 mT, K=60 J/m3, T=39 °C, n=6.46 mPa.s,
d.=27 nm, d;,=100 nm. (c) Results for f=5475 Hz, B,=11mT,
K=1735]/m3, T=43 °C, n=2.06 mPa.s, d,=26 nm, d;=55 nm.
(d) Results for f=6492 Hz, B,=23 mT, K=5168 J/m?3, T=37 °C,
n=15.33 mPa.s, d.=12 nm, d; =52 nm.

NRMSE of signals predicted by the FNO was 0.26%, when
compared to the ground-truth signals.

As listed in Table 2, the median computation time-
sacross all 1000 test samples were 504.38 sec and
0.0026 sec for the VSVO solver and the FNO model, re-
spectively. The total computation time for all 1000 test
samples was approximately 6 days for the VSVO solver,
in contrast to 2.64 sec for the FNO model. The NRMSE
of the predicted signals have a median (25'"-75'" per-
centile) of 0.61% (0.36%-1.30%). Hence, our FNO model
is approximately 195,000 times faster than the VSVO
solver, while maintaining high signal fidelity.
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It should be mentioned that while the NRMSE values
remain quite small for the majority of the cases, there
were a few outlier cases for which the NRMSE reached
21%. Most notably, these outlier cases had large core
diameters. Potential parameters to investigate here are
the number of harmonics included during the harmonic
selection, and the number of time points in a period.
Further analysis of these outlier cases and investigation
of potential solutions remains a topic of future work.

IV. Conclusion

In this work, we proposed a FNO model for the coupled
Brown-Néel rotation model, and demonstrated its per-
formance for an extensive set of MNP parameters and en-
vironmental parameters. The results show that the FNO
model provides a significant advantage in computation
time with near exact prediction of the MNP signal from
a VSVO solver. This reduction in computation time can
enable analysis of MNP behaviour under a wide range
of settings for applications, such as determining the op-
timal DF settings for viscosity mapping or temperature

mapping.
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