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Abstract
The Langevin model of paramagnetism is commonly used as a simplified physical model for magnetic particle
imaging. In research with immobilized nanoparticles that are non-oriented, the phenomenon is observed that the
measured system function components for Lissajous trajectory-based excitation show a high spatial similarity to
those from the Langevin model of paramagnetism. In this work we show that this observation can be explained
mathematically, since in equilibrium and for anisotropic uniaxial nanoparticles without orientation the model
falls back to the Langevin model of paramagnetism. Since previous studies have also shown that the anisotropic
equilibrium model for immobilized particles is approximately equivalent to the Néel rotation Fokker-Planck model,
the Langevin model of paramagnetism is sufficient to cover the non-oriented immobilized case.

I. Introduction

For model-based magnetic particle imaging (MPI), it is of
utmost importance to have good physical models for the
magnetic moment of superparamagnetic nanoparticles
(SPIOs). In a first attempt, the Langevin model of param-
agnetism has been used, which allows for fast simulation
of the MPI systems [1]. However, the model is rather
simplified as it neglects particle anisotropies and mag-
netization dynamics. If anisotropies of the particles are
taken into account, the Stoner-Wolfarth model is usually
used to model the magnetic moment of the nanoparticles
with a uniaxial anisotropy [2]. Since the Stoner-Wolfarth
model is very simple, typical SPIOs show a more com-

plex anisotropy that cannot be properly explained by the
Stoner-Wolfarth model [3]. The magnetization mecha-
nisms are usually described by the Néel rotation, which
describes the internal rotation of the magnetic moment,
and the Brownian rotation, which describes the spatial
rotation of the entire particle. Various models and meth-
ods can be used to simulate the coupled dynamics [4, 5].
Although these models allow for a better explanation of
the imaging process, they have the disadvantage that the
simulation is time-consuming. As an intermediate solu-
tion, it has been investigated whether it is possible for
typical SPIO distributions and MPI scanners to replace
the probability density function, which is obtained by
numerically solving a Fokker-Planck equation (FP), with
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an equilibrium (EQ) model with anisotropy (EQA) [6–
8]. In order to neglect Brownian rotation, the behavior
of immobilized particles with oriented [7, 9] and non-
oriented [10] SPIOs was investigated. The parameter
identification of the FP model in [10] leads to a model
with a small anisotropy constant. In this work, we show
that this does not happen by chance because if the SPIO
distribution is perfectly non-oriented and immobilized,
i.e., the anisotropy directions are uniformly distributed,
the EQA model becomes an EQ model without anisotropy.
In addition, for a typical SPIO tracer and a Lissajous-type
MPI sequence, the Néel rotation FP model [11, B1] and
the EQA model are very close to each other [9]. Further-
more, the theoretical findings in this article are analyzed
on the basis of system function components (SFCs) using
simulated as well as experimental data.

II. Methods and Materials

The assumption is made that the monodisperse particles
are modeled with the same particle diameter, the same
anisotropy constant and a uniaxial easy axis, and that the
particles have been immobilized so that Néel rotation is
the only magnetization mechanism. The mean magnetic
moment can be derived from the partition function (PF)
by

m̄ (H ;O) =
m0

β
∇H ln(Z(H ,O)) =

m0

β

∇H Z(H ,O)
Z(H ,O)

.

and is given for immobilized and oriented SPIOs in the
thermodynamical EQ with the easy axis n ∈ S2 by

Z(H ;O) =
∫

S2

eβH T m+αK (n T m )2 dm ,

whereO= {αK , n } denotes the observable parameter set
in the Boltzmann distribution,αK an anisotropy strength,
H ∈R3 the applied magnetic field, β > 0 a physical pa-
rameter dependent on the particle diameter, and the
argument parameter m ∈ S2. Besides, m0 denotes the
magnitude of the magnetic moment of one SPIO. Note
that S2 denotes the surface of the unit sphere.

However, what if the SPIO are immobilized but the
easy axes of the SPIOs are uniformly distributed? Based
on the Néel rotation FP model, such a situation was in-
vestigated in [10] for a polydisperse model. The analy-
sis of the results in the previous article showed that the
anisotropy constant αK was estimated rather small.

In the following, it is shown that for the investigated
case, the EQA model leads to an EQ model without
anisotropy. To show this, the PF is examined and a
uniformly distributed easy axis n ∼U (S2) is assumed.
The structural concept of the following derivations was
adopted from [12, Appendix]. Hence, the following ap-

plies

Z(H ;{αK , n ∼U (S2)}
︸ ︷︷ ︸

=Õ

) =

∫

S2

∫

S2

eβH T m+αK (n T m )2 dm dn

=

∫

S2

eβH T m

∫

S2

eαK (n T m )2 dn

︸ ︷︷ ︸

=R(αK ,m )

dm ,

where the change in the order of integration is allowed
because the function eβH T m+αK (n T m ) is continuous for
all n , m ∈ S2, therefore the Fubini theorem can be ap-
plied. The inner integral R(αK , m ) is to be investigated.
First, choose a rotation matrix R m ∈ R3×3 such that
e3 = R m m , where e3 is the third Euclidean unit vec-
tor and perform the substitution ñ = R m n in the inte-
gral. Due to R m being orthogonal, R T

m R m = I , where
I ∈R3×3 is the unit matrix, and |det(R m )|= 1. Thus, we
get dñ = |det(R m )|dn = dn and therefore the following
applies

R(αK , m ) =

∫

S2

eαK (n T R T
m R m m )2 dn =

∫

S2

eαK ñ 2
3 dñ .

Using spherical coordinates (ñ1 = sin(ϑ)cos(ϕ), ñ2 =
sin(ϑ)sin(ϕ), ñ3 = cos(ϑ),ϑ ∈ [0,π],ϕ ∈ [0,2π)) followed
by the substitution x = cos(ϑ) one obtains

R(αK , m ) = F (αK) = 2π

∫ 1

−1

eαK x 2
dx .

The function R(αK , m ) is constant in m and can be ex-
pressed as a function F (αK) independent of m . There-
fore, the PF is

Z(H ;Õ) = F (αK)

∫

S2

eβH T m dm = 4πF (αK)
sinh(β‖H ‖)
β‖H ‖

.

Since αK is independent of H and because the mean
magnetic moment can be derived from the PF, we obtain

m̄
�

H ;Õ
�

=
m0

β
∇H ln

�

Z
�

H ,Õ
��

=m0L (β‖H ‖2)
H

‖H ‖2
,

withL (ξ) being the Langevin function. Thus, for immo-
bilized non-oriented particles, the EQA model is equiva-
lent to the Langevin model of paramagnetism.

II.I. Experiment
It should be checked numerically whether the Langevin
model of paramagnetism is good enough to describe the
Néel rotation FP model and a measured system func-
tion when the SPIOs are immobilized and non-oriented.
Therefore, a 2D system matrix with spatial discretiza-
tion of 17× 15 is measured with a delta sample of size
2× 2× 2 cm3 filled with perimag at a concentration of
10 molFE/l . Bruker’s preclinical MPI scanner is used with
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Figure 1: The top row shows the row energy of the SFCs as a function of the frequency. The bottom row shows different error
measures depending on the mixing orders mx and my . The bottom row shows from left to right the NRMSE of the FP-SFC to the
measured SFC (a), the EQ-SFC to the measured SFC (b), the difference between the NRMSEs of the two left diagrams (c), and the
NRMSE between EQ-SFC and FP-SFC (d).

a gradient strength of (−1,−1, 2) T m−1 and a cosine drive-
field excitation with a frequency ratio of fx / fy = 16/17
( fx = 2.5/102 MHz) and amplitudes of (0.012,0.012,0)
T. The FP simulation for the Neél rotation is carried out
using the toolbox of [13]. The EQ model is simulated
using the Langevin function. The optimal particle di-
ameter was found to be 22 nm for both models. The
transfer function is determined using the least squares
method according to [14]. The normalized root means
square error (NRMSE) is calculated by the measure in [9].
For the comparison, mixing orders are used that assign
the temporal frequency index k ∈ Z to the spatial fre-
quency orders mx , my ∈Z, where the following applies:
k = 16mx +17my .

III. Results
The top row in Figure 1 shows the row energy of the mea-
sured SFCs, FP-SFCs, and EQ-SFCs [15]. The energy is
normalized so that the largest energy value of the mea-
sured SFC is normalized to 1. It can be seen that different
SFCs between 75 kHz and 360 kHz, that have high en-
ergy, match quite well. For low energy SFCs, a slightly
lower energy can be observed in the model-based SFCs.
For model-based FP-SFCs and EQ-SFCs no substantial
differences are visually apparent. The two Figures 1 (a)

and (b) show the NRMSE of the model-based SFCs to
the measured SFCs as function of the mixing orders. The
mixing orders (0, 0) (0, 1) (1, 0) are removed, as no or only
a very low SPIO signal is expected due to the filtering
in the receive chain. A relatively high error is observed
near the zero mixing order, which could be due to the
harmonics of the drive field sequences and the filtering
to remove these harmonics from the measured signal.
After zero mixing orders, the NRMSE decreases sharply
and then increases slightly with increasing mixing order.
The two Figures 1 (c) and (d) show that the two SFC mod-
els do not differ significantly from each other. As can be
seen in Figure 1 (c), the NRMSE difference between two
models is in the range -0.7 ·10−3 and 4.7 ·10−3. For small
mixing orders, the FP model has the smaller NRMSE, but
for larger mixing orders with mx ≥ 5 and mx ≥ 5 the EQ
model has a smaller error, which might depend on the
numerical solution of the FP equations. The difference
in the NRMSE is two orders of magnitude smaller than
the NRMSE in Figures 1 (a) and (b), which indicates a
very small difference between the two models in terms of
modeling quality. The comparison of the EQ model with
the FP model in Figure 1 (d) shows that the NRMSE for
|my |, |mx | ≤ 8 is relatively small with a maximum value of
about 0.02 and that the NRMSE increases with increasing
mixing order.
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IV. Discussion and Conclusion
For the EQ model with anisotropy the mathematical
proof shows that the influence of SPIO anisotropy is elim-
inated if the SPIOs are immobilized and non-oriented,
i.e., have uniformly distributed easy axis. Although the
FP model behaves similarly as observed in the results
in [10] and [11, Fig. 2], it is not entirely clear whether a
similar result can be derived for the FP case, i.e. that the
non-oriented FP model is equivalent to the FP model
[11, B1]. However, the numerical results show that the
influence of anisotropy is small in the non-oriented case.
It should be mentioned that the particle model with im-
mobilized and non-oriented SPIOs investigated here is a
rather specialized scenario for MPI, suitable, for exam-
ple, for tracking medical instruments such as stents. In
contrast, in a more realistic scenario, where the SPIOs
are immobilized to a certain degree, one would expect
Brownian rotation to rotate the SPIOs towards their local
energetic optimum, i.e. in this model, for example, to-
wards the uniaxial easy axis. One would thus observe a
kind of commutative anisotropy effect that depends on
the strength of the magnetic field and the degree of im-
mobilization. Nevertheless, the theoretical and practical
insight that the Langevin model of paramagnetism itself
is sufficient for this particle model has its own value.
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