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Abstract
In Magnetic Particle Imaging (MPI), it is typically assumed that the studied specimen is stationary during the data
acquisition. In practical applications however, the searched-for 3D distribution of the magnetic nanoparticles might
show a dynamic behavior, caused by e.g. breathing or movement of the blood. Neglecting those dynamics during
the reconstruction step results in motion artifacts and a reduced image quality. This article addresses the challenge
of capturing high quality images in the presence of motion. A promising technique provides the Regularized
Sequential Subspace Optimization (RESESOP) algorithm, which takes dynamics as model inexactness into account,
significantly improving reconstruction compared to standard static algorithms like regularized Kaczmarz. Notably,
this algorithm operates with minimal prior information and the method allows for subframe reconstruction, making
it suitable for scenarios with rapid particle movement. The performance of the proposed method is demonstrated
on both simulated and real data sets.

I. Introduction

Magnetic Particle Imaging (MPI), initially proposed by
Gleich and Weizenecker [1], is an emerging imaging
modality that enables insights into a specimen by mea-
suring the response of superparamagnetic nanoparticles
to an applied magnetic field. To this end particles are in-
jected with a certain tracer concentration c :Ω 7→R+ ∪0
into the area of interest, which is called the field of view
Ω ⊂ R3. Through layering two magnetic fields, i.e. the
drive field and the selection field, a field-free point moves
through the field of view along a Lissajous trajectory. The
time interval of one Lissajous trajectory is called frame.
The dynamic field excitation caused by the moving field-
free point results in a time-varying magnetization M of
the injected particles, which induces a measurable volt-
age v P over a time interval I := [0, T] in the receive coils.
To reconstruct c it is necessary to separate it from M
by M = c m̄ with the particles’ mean magnetic moment

m̄ :Ω× I 7→R3. Knowing this, at the core of MPI lies the
fundamental equation

v P (t ) =

∫

Ω

c (x ) (−a ∗µ0p R (x )T
∂

∂ t
m̄ (x , t ))

︸ ︷︷ ︸

=:S (x ,t )

dx , t ∈ I (1)

where µ0 is the constant magnetic permeability of vac-
uum and p R :Ω 7→R3 is the receive coil sensitivity. The
analog filter a : [−T, T]→R is applied to mitigate the di-
rect feedthrough, a voltage induced by the applied mag-
netic field.

In MPI, two key challenges arise. The determination
of m̄ (x , t ) from given tupels (c , v P ) is called the calibra-
tion problem. The standard procedure relies on a time
consuming measurement-based approach [2]. Alterna-
tively, model-based techniques are explored which offer
a less resource-intensive path, although they may not de-
liver the same level of precision, see e.g. [3]. A first step to
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compensate for such inexactnesses of the resulting sys-
tem matrix within the reconstruction step was proposed
in [4].

In this research, our primary focus is on the image
reconstruction problem. In other words, the goal is to
determine the tracer concentration c (x ), x ∈Ω from ob-
served measurements v P (t ), t ∈ I with a given system
function. This process necessitates the discretization of
(1), yielding a linear system

Ac = v, A ∈RN×M , c ∈RM , v ∈RN , (2)

with given system matrix A, measurement vector v and
searched-for discrete concentration c . The dimensions
are given by N , which is the number of considered tempo-
ral points multiplied by the number of receive coils being
usually three, as well as the number of spatial points M
of the discretized field of view.

The most common solver in MPI is the Kaczmarz
method with Tikhonov regularization, also called regular-
ized Kaczmarz, which mainly consists of a fixed point iter-
ation. By iteratively projecting the approximate solution
orthogonally onto affine subspaces, the method solves
the linear system in (1). More insights can be found in
the literature, see e.g. [2].

I.I. Dynamics in MPI
The regularized Kaczmarz method works well if the
searched-for concentration is stationary. Be that as it
may, many potential clinical applications rely on the re-
construction from dynamic MPI data, e.g. imaging blood
flow [5], tracking medical instruments [6] or monitoring
of strokes [7, 8]. If the concentration is time-dependent
and changes during the data acquisition, motion artifacts
will arise in the reconstructions unless the dynamics are
compensated for within the reconstruction step. This is-
sue is exacerbated in the so-called multi-frame scenario,
where the concentration is reconstructed from multiple
data sets that are blockwise averaged over time to im-
prove the signal-to-noise ratio and the spatial resolution
of the image.

The regularized Kaczmarz method does not take dy-
namics of the concentration into account. Figure 1 illus-
trates motion artifacts arising in single- as well as multi-
frame reconstructions. As example, we considered sim-
ulated noise free data for a fast rotating cylinder, more
precisely it performs one full rotation during the acquisi-
tion of seven frames. Information about the simulation
settings is detailed in Section III. A 2D slice of the 3D
ground truth at time instance t = 0 is depicted in subfig-
ure (a). Reconstruction results from a single-frame data
set with regularized Kaczmarz are shown in subfigures (c)
and (d) for different regularization parametersλwith the
one in (d) being optimal with respect to producing mini-
mal visual motion artifacts. In both cases, the computed
solution is not sharp and includes motion artifacts. Even

(a) Phantom (b) λ= 1: Averaging

(c) λ= 0.1: One frame (d) λ= 1: One frame

Figure 1: Reconstruction results with regularized Kaczmarz
from noise free data of a fast rotating cylinder.

with the optimal parameter the method is not able to
provide a good approximation to the ground truth while
the averaging of 20 frames in the multi-frame scenario
further increases the motion artifacts, see subfigure (b).

Consequently, it becomes imperative to account for
dynamics, i.e. to address the image reconstruction task
as a dynamic inverse problem. A universal, standardized
regularization technique for dynamic inverse problems
does not exist. While a multitude of approaches have
been proposed for individual traditional tomographic
applications, only a few have been presented in the field
of MPI in response to this challenge.

For instance, a strategy to account for periodic mo-
tion by pre-processing the measured data is developed in
[9]. By estimating the motion frequency associated with
periodic motion, the authors effectively grouped data
samples and thus generated static single-frame data sets
for the individual states of the object. Consequently, an
image of each state can be reconstructed with standard
static algorithms. This approach has also been extended
to multi-patch MPI [10].

A dynamic forward model within MPI is offered in
[11], which is combined with a reconstruction method
using temporal splines to increase temporal resolution
in [12].

Another approach is based on estimating the motion
using optical flow, a computationally expensive method
that has been examined in applications like CT or MRI
[13]. Its application in a dynamic MPI scenario was first
proposed in [14] and in more detail in [15]using a stochas-
tic primal-dual algorithm to jointly estimate the motion
and reconstruct the image.
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In this article we propose to apply the Regularized
Sequential Subspace Optimization method (RESESOP)
for inexact model operators [16] to the dynamic MPI
problem. With this method we take motion implicitly as
model inexactness into account and are able to recon-
struct images from motion corrupted data, which are
of higher quality than those computed by regularized
Kaczmarz, without the need of explicitly estimating the
motion. We will see that the only required a priori in-
formation can be gained from the measured MPI data
itself. Furthermore, no special pre-processing of the data
beyond the standard is required.

The article is organized as follows. In Section II
we first introduce the mathematical model of time-
dependent concentration reconstruction in MPI and ar-
gue that dynamics induce model inexactness. We then
present the general concept of the RESESOP and transfer
it to the dynamic reconstruction problem in MPI. In par-
ticular, we discuss how the required a priori information
on the model inexactness can be extracted directly from
the measured MPI data. Finally, we provide a detailed
numerical evaluation of the method. The respective test
cases, including simulated as well as real data sets, are
introduced in Section III. In Section IV, we present respec-
tive reconstruction results and analyze the performance
of the proposed algorithm.

II. Methods
As illustrated in the introduction, reconstruction algo-
rithms need to account for dynamics of the studied con-
centration. In order to develop such algorithms, the time-
dependency of the concentration first needs to be in-
corporated into the mathematical model of MPI, i.e. in
equation (1) and (2), respectively.

II.I. The mathematical model of MPI
with time-dependent concentrations

Imaging a time-dependent particle concentration, i.e.
c :Ω× I 7→R+ ∪0, implies that it is changing during the
measuring process. In the most extreme scenario, the
time-scale of the concentration dynamics coincides with
the one of the data acquisition, i.e.

v P (t ) =

∫

Ω

c (x , t )S (x , t )dx , t ∈ I (3)

or in the discretized setting

At ct = vt ∀t ∈ [0, T ], At ∈R3×M , ct ∈RM , vt ∈R3. (4)

In other words, each single measure v P (t ) (respectively
vt ), t being one particular time instance, captures a dif-
ferent state of the concentration. Even with strong a
priori assumptions a dynamic concentration reconstruc-
tion on the same temporal granularity as defined by the

sampling rate of the measurement process is hardly pos-
sible.

However, an important characteristic of MPI are the
very fast measurement times which imply that the tem-
poral resolution of the concentration is typically several
orders coarser than the data sampling rate. Thus, it is rea-
sonable to assume that the searched-for concentration
is piecewise constant in time. This motivates to formally
split the time interval I into Nτ pairwise disjoint time
subintervals Ii := [τi ,τi+1)with i = 0, 1, . . . , Nτ−1 as well
as τ0 := 0 and τNτ := T . As a consequence it holds

I = ∪̇i=0,1,...,Nτ−1Ii , c (x , t ) = cτi
(x ) for t ∈ Ii .

Both the time scale of the measurement and the coarser
time scale of the dynamic concentration can then be
coupled by a function

γ : I →{τi , i = 0, 1, . . . , Nτ−1}, γ(t ) :=τi if t ∈ Ii .

With this notation, the general dynamic reconstruction
problem can be formulated as

v P (t ) =

∫

Ω

c (x ,γ(t ))S (x , t )dx , t ∈ I , (5)

or in discretized form

Ai cτi
= vi ∀ i ∈ {0, 1, . . . , Nτ−1} (6)

with given Ai ∈R(Ni ·3)×M , searched-for cτi
∈RM and mea-

sured vi ∈R(Ni ·3), where Ni denotes the number of time
samples per sub-interval Ii .

In Section II.II, we will focus on solving the discretized
dynamic inverse problem. Considering each subproblem
Ai cτi

= vi individually would formally allow the applica-
tion of a classic static reconstruction method. However,
in analogy to the multi-frame approach, the goal is to
improve the SNR and the spatial resolution of the images.
In order to achieve this in the presence of motion, corre-
lations between the states have to be exploited within the
joint reconstruction step. Furthermore, if the length of a
subinterval Ii is smaller than the time required to mea-
sure one complete frame, the solution of the respective
subproblem has to deal with a limited-data problem.

The actual decomposition of I into subintervals will
depend on the specific application. Suitable choices are
discussed in the following subsection.

II.I.1. Choosing suitable subintervals

In the multi-frame scenario, an intuitive idea is to let
each subproblem coincide with one frame. Indeed, many
concentration dynamics might be assumed stationary
within one frame. The actual time to acquire data for
one frame is very small, e.g. for a 3D field of view, it takes
21.54 ms. Thus, for velocities lower than 10 centimeters
per second, for instance, the travelled distance within the
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21.54 ms is smaller than the length of the edge of a voxel
[17]. Additionally, the usage of frames as subproblems
simplifies the implementation within an MPI framework.
Real data are usually pre-processed and stored frame-
by-frame. Thus, a dynamic reconstruction algorithm
working on frames can be embedded directly in existing
MPI software pipelines.

However, if the examined structure changes faster
than the acquisition of one frame, e.g. due to a pulsating
motion or a fast rotation, this rigid coupling of time scales
is not feasible and would still lead to motion artifacts. A
way to handle these scenarios is to choose smaller sub-
problems which are then even more underdetermined
than the original inverse problem. Looking at it from
a practical perspective, one timestep t is equivalent to
0.8µs in MPI. Thus, choosing subproblems correspond-
ing to either one frame, half a frame or a quarter of a
frame seem adequate to represent and capture most rel-
evant concentration dynamics.

II.I.2. Interpreting the dynamics as model
inexactness

A common strategy in dynamic imaging problems is the
incorporation of motion models to relate the different
states of the object to each other, see e.g. [18, 19]. In our
case, this means that instead of considering a series of
independent concentrations cτi

, it is assumed that they
are all linked together by an underlying motion model Γ ,
for instance

c (x , t ) = c0(Γt (x ))

with a reference configuration c0, e.g. the concentration
c0 = c (·,0) at the initial time of the data acquisition. In-
corporating such a motion model into the equation (5)
and using an appropriate change of coordinates yields an
inverse problem for the reference concentration c0 with a
forward operator depending on the motion information
Γ , i.e. in the discretized setting

Ai ,Γ c0 = vi ∀ i ∈ {0, 1, . . . , Nτ−1} (7)

with Ai ,Γ ∈ R(Ni ·3)×M . Please note that we use the same
symbol c0 in both continuous and discretized setting for
the reference configuration in order to keep the notation
as simple as possible. A detailed derivation in the general
context of inverse problems can be found in [18]. Thus,
extracting the time-dependent concentrations c (·, t ) is
equivalent to extracting the motion information Γ and
the reference concentration c0.

In general, the exact motion Γ will be unknown, i.e. in
practice, one can only use an approximate forward oper-
ator to determine c0, e.g. the static model Ai if no further
information on the dynamics are available. Therefore,
we treat the dynamics in the following as inexactness
in the forward model and account for this inexactness
while recovering c0 from the measured dynamic data
vi , i = 0, 1, . . . , Nτ−1.

H (u ,α)
H (u ,α+ξ)

H (u ,α−ξ)

ξ
H (u ,α,ξ)

Figure 2: Illustration of a stripe

II.II. RESESOP method for solving
inverse problems with inexact
forward operator

In this work we propose to solve the dynamic reconstruc-
tion problem in MPI (7) with the RESESOP-Kaczmarz
method developed in [16] for solving general inverse
problems with inexact forward operator.

This method is based on the Sequential Subspace Op-
timization method (SESOP) [20]. It is an iterative method
that approximates the searched-for solution f of a given
linear inverse problem B f = g by the following scheme:
In the n-th step, compute

f(n+1) = PH ( f(n ))

with the metric projection PH onto an intersection H =
∩ j∈Jn

H (u j ,α j )with hyperplanes

H (u ,α) = {x ∈ X : 〈u , x 〉=α}.

In particular, each iteration has the following choices of
freedom:

• a finite index set Jn with |Jn | denoting the number
of search directions u j and thus the number of hy-
perplanes used in the n-th iteration,

• search-directions u j and parameters α j which are
chosen in accordance to the right-hand side g and
the forward model B , for instance, in case Jn = {n} a
suitable choice is un = B ∗(B f(n )− g ) as well as αn =
〈B f(n )− g , g 〉.

This method relies on knowing the exact forward model
B and on exactly known right-hand side g . In practice
however, only noisy data g δ with noise level ‖g − g δ‖ ≤δ
can be measured and, as in our case, only an inexact for-
ward operator Bη with inexactness level ‖B −Bη‖ ≤η
might be available for the reconstruction. Thus, the idea
of RESESOP (regularized SESOP) is to replace the hyper-
planes H (u ,α) by stripes

H (u ,α,ξ) := {x ∈ X : |〈u , x 〉−α| ≤ ξ},

whose width ξ is chosen in dependence on the noise and
inexactness levelsδ andη, see Figure 2 for an illustration.
This idea was originally suggested in [21] for the noisy
data case and was expanded to model imperfections in
[16]. The introduction of Morozov’s discrepancy princi-
ple offers a stopping criterion; as a result, it can be proven
under certain conditions on the choice of Jn , ui ,αi , that
the method provides a regularized solution to the origi-
nal inverse problem [21].
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Algorithm 1 RESESOP-Kaczmarz

Choose initial guess c(0) and constant ρ > 0.
Let n = 0 be the iteration index.
Let nfull = 1 be the index for full iterations.
while n < nfull ·Nτ do

Check discrepancy principle

if ||A[n ]c(n )− v η,δ
[n ] || ≤ 1.001 · (η[n ]ρ+δ[n ]) then

c(n+1) = c(n )
else

Choose a finite index set Jn ⊂ {0, 1, . . . , [n ]}
Choose search directions un , j for all j ∈ Jn

Define H η,δ
(n ) := ∩

j∈Jn

H (un , j ,αn , j ,ξn , j )

with parameters αn , j = 〈un , j , c(n )〉

and ξn , j = (η jρ+δ j )‖A j c(n )− v η,δ
j ‖

Compute c(n+1) = PH η,δ
(n )
(c(n ))

Update iteration index n = n +1
end if

end while
if c(n ) 6= c(n−Nτ) then

nfull = nfull+1
Repeat While Loop

else
Break

end if

When solving an inverse problem that shows a sub-
problem structure like (7), it is beneficial to include indi-
vidual inexactness and noise levels ηi , δi , in our case

‖vi − v δi ‖ ≤δi , ‖Ai −Aηi ‖ ≤ηi , i ∈ {0, 1, . . . , Nτ−1}.

In particular, with such estimates, we obtain

‖Aηi c − v δi ‖ ≤ηi ρ+δi

as upper bound for the residual on the set of solutions
whose norm is bounded byρ > 0. For this case, Blanke et
al. proposed the so-called RESESOP-Kaczmarz method:
Each iteration corresponds to a RESESOP iteration with
subproblem specific inexactness and noise levels applied
to every subproblem that does not yet satisfy the discrep-
ancy principle. In this way, the algorithm combines all
subproblems and incorporates information from all time
intervalls Ii simultaneously.

A general form of the RESESOP-Kaczmarz method
is stated in Algorithm 1. With n being the current iter-
ation index, the notation [n ] := n mod Nτ identifies the
corresponding subproblem (6). One full iteration con-
sists of Nτ subiterations, each including a metric projec-

tion onto the intersection of stripes H η,δ
(n ) . After each full

RESESOP-Kaczmarz iteration, i.e. [n ] = 0, it is checked, if
the discrepancy principle was satisfied for all subprob-
lems.

Algorithm 2 Computation of PH η,δ (c )
Example for |J |= 2, J = {1, 2}

Project onto hyperplane H (u2,α2+ξ2), i.e. compute

c̃ = PH (u2,α2+ξ2)(c) = c −
〈u2, c 〉− (α2+ξ2)

‖u2‖2
u2

Check if c̃ is already part of stripe H (u1,α1,ξ1)
if c̃ ∈H (u1,α1,ξ1) then

PH η,δ (c ) = c̃
else

Project onto H (u2,α2+ξ2)∩H (u1,α1±ξ1),
i.e. compute

T=
〈u1, c̃〉− (α1±ξ1))
‖u2‖2‖u1‖2−〈u2, u1〉2

PH η,δ (c ) = c̃ + 〈u2, u1〉T−‖u2‖2T
end if

For the example of two search directions, the metric
projection can be computed via Algorithm 2.

RESESOP-Kaczmarz does not require extensive or un-
realistic a priori information to solve inverse problems
with inexact forward models such as dynamic reconstruc-
tion problems. The estimates of the uncertainty levels are
the only additional information used compared to stan-
dard static approaches. Consequently, when applying
the method to dynamic problems, the motion informa-
tion will be implicitly included in the inexactness levels.

However, a sufficiently good estimate is crucial for the
performance of RESESOP. If the estimates are too large
the convergence of the method can be fast but it leads to
a computed solution with a high error rate. If the levels
are estimated too low the noise and the model imperfec-
tions might not be compensated for sufficiently resulting
in a noisy reconstruction with artifacts. The extreme
case, where the levels are set to zero, corresponds to a
SESOP-Kaczmarz reconstruction without regularization
and accounting for model inexactness, i.e. in particu-
lar to a static reconstruction where the Kaczmarz loop
results in an averaging of the data.

Next, we discuss further adaptions of this general
framework to the application in dynamic MPI, in par-
ticular how the required estimates can be obtained and
how the search directions can be chosen.

II.III. Application in MPI
II.III.1. Inexactness levels in dynamic MPI

We first discuss how to determine estimates for the noise
and inexactness levels. In a static multi-frame setting,
the noise levels δi can be determined by comparing the
data vectors measured per frame.

The inexactness levels depend on the selected model
for the reconstruction algorithm. Due to the time con-
suming process of calibration in real MPI and since we
assume no further prior information on the unknown
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motion Γ , we propose to use the static system matrix
Ai as inexact forward model. Without knowledge of Γ ,
it is difficult to compute a viable upper bound ηi with
‖Ai −Ai ,Γ ‖ ≤ηi .

However, if we compare again data sets for different
frames in a dynamic scenario, their difference captures
noise as well as motion. For this reason, we propose to
jointly estimate both uncertainty levels together in form
of levels ζi ∈R characterizing the total inexactness of the
system, more precisely for each subproblem

ζi ≈ηiρ+δi , i ∈ {0, 1, . . . , Nτ−1}.

These values are computed by comparing the data v0 of
the initial subproblem with data vi of the i -th subprob-
lem. If the size of each subproblem corresponds to one
frame, it is simply ζi = ‖v0− vi ‖.

However, in case of subframe-sized subproblems, this
direct comparison is not possible but requires an addi-
tional interpolation step beforehand. Each subproblem
corresponds to a number of time points t of a frame. Con-
sequently, the data fragment of the initial subproblem is
comparable to the data acquired at the same time points
of each frame, e.g. the uncertainty levels between the
first subproblem of the first frame and the first subprob-
lem of every other frame can be evaluated. However, to
compute an estimate for the uncertainty level of another
subproblem of the same frame with the same method is
impossible. Therefore, we apply a cubic interpolation be-
tween comparable data fragments to acquire uncertainty
levels for each subproblem.

An alternative method to estimate the uncertainty lev-
els ζi is to make use of preliminary regularized Kaczmarz
reconstructions. To quantify the error between Kacz-
marz’s reconstructions, the mean-squared error MSE is
used. However, this approach depends on a priori recon-
structions which will typically contain artifacts and thus
can result in a low MSE. Thus, an extraction directly from
measured data seems favorable.

II.III.2. Choice of search directions

The convergence properties of SESOP, and hence
RESESOP-Kaczmarz, depend on the number and choice
of the search-directions. On the one hand, a higher num-
ber of search directions results in more complex and
computationally expensive iterations. On the other hand,
the algorithm requires in total less iterations to achieve
the desired accuracy. In this work we will focus on two
search directions which is a compromise between com-
putational expense for one iteration as well as total num-
ber of iterations.

More precisely, we choose in the n-th iteration step
the finite index set Jn = {n−, n}with n− representing the
last iteration in which the discrepancy principle did not
yet hold. The search directions un , j with j ∈ Jn are then

chosen as

un ,n− = A∗[n−](A[n−]c(n−)− v[n−]),

un ,n = A∗[n ](A[n ]c(n )− v[n ]).

In particular, this choice meets the criteria formulated
in [16] that guarantee the convergence of RESESOP-
Kaczmarz to a regularized solution of the underlying
dynamic inverse problem.

II.III.3. Non-negativity constraints

In the MPI setting the reconstructed image approximates
the concentration c , which is a vector consisting of real,
non-negative numbers. Therefore, a non-negativity con-
straint is a common technique to improve reconstruc-
tion algorithms [2]. To that end, after each iteration every
negative part is set to zero.

III. Data
Our test cases for the numerical evaluation comprise
both real and simulated data, each offering valuable in-
sights into the dynamic reconstruction problem in MPI
and the performance of the proposed method. This dual
test set strategy allows for a robust evaluation under con-
trolled conditions (simulated data) as well as real-world
scenarios (real data).

III.I. Simulated Data
We first conduct a fully simulated numerical experiment.
This simulated dataset was generated using the model
B3 presented by Kluth, Szwargulski, and Knopp [22].

The goal was to construct a similar setup as the avail-
able real data. To that end, the phantom is a cylinder
rotating through the field of view. There are two different
rotation speeds, depending on the number of frames per
rotation (fpr). They are equivalent to 44 and seven fpr or
more specifically, e.g. between frame one and two, the
concentration is displaced by 0.163 voxels in x-direction
and 2.277 voxels in y-direction (44 fpr) respectively 6.024
voxels in x-direction and 12.509 voxels in y-direction (7
fpr). Figure 3 illustrates the underlying rotating motion
of the object in the simulated test data case.

The simulated system matrix is derived from dynamic
simulations of Néel-type particle magnetization dynam-
ics. Here, the uniaxial particle anisotropy varies with
position within the field of view. The anisotropy is mini-
mal at the center but intensifies toward the boundaries.
This choice aligns with the assumptions in MPI, where
the static component of the applied magnetic field is
believed to induce physical rotation of particles and in-
fluence their combined anisotropy energy landscape.

The simulated data were generated on a 3D grid of
61×61×5 pixels, each with a resolution of 0.5 mm. A 2D
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

Figure 3: The course of the motion illustrated by the ground
truth phantom at the beginning of each trajectory of the fast
rotation (seven fpr).

Lissajous excitation was used, with anisotropy constants
reaching values as high as 1250 J/m3. The system matrix
was extended to three dimensions by stacking multiple
layers in z-direction. In discretized form this resulted in
M = 18605 spatial points and Ni = 1633 temporal points
per frame.

To create the system matrix, we utilized a dedicated
toolbox presented in Albers, Kluth, and Knopp [23]. To
prevent inverse crime, the data were calculated using a
slightly shifted, larger matrix, ensuring the integrity of
our simulation experiments. Furthermore, we added
white Gaussian noise to the data corresponding to a
signal-to-noise ratio of 10.

III.II. Real Data
The real data were provided by Brandt from the Univer-
sity of Hamburg and collected by a team at UKE Hamburg
led by Knopp. These data encode a glass capillary, which
rotates at an average speed of seven Hz and was initially
introduced in the study by Gdaniec et al. [9]. This experi-
ment represents a very fast motion.

Working with real data presents some additional chal-
lenges compared to simulated data. Typically, one lacks
a ground truth which hinders a direct assessment of the
accuracy of the reconstruction. Moreover, real measure-
ments usually have high degree of noise, adding com-
plexity to the reconstruction task in the dynamic case
where noise levels cannot be reduced by averaging over
multiple frames. This is further amplified in MPI due to
the fact that the system function is measured as well.

These experiments were conducted using a pre-
clinical MPI scanner from Bruker Biospin in Ettlingen.
The imaging setup involved 3D MPI measurements with
a Lissajous excitation driven by three sinusoidal drive
fields in the x -, y -, and z -directions. These fields op-
erated at frequencies of fx =

2.5MHz
102 , fy =

2.5MHz
96 , and

fz =
2.5MHz

99 , with an amplitude of 14 mT
µ0

. Each cycle of
data acquisition took 21.54 ms, and the induced signal

was sampled at intervals of 0.8µs resulting in Ni = 53857
temporal points per frame. The measurements covered
M = 15625 positions in a 25×25×25 grid. More detailed
information can be found in [9].

III.III. Pre-processing

To the real data, the standard pre-processing steps were
applied. After applying the Fourier transform, a fre-
quency selection was performed, more precisely all fre-
quencies below 80 kHz and above 625 kHz were elimi-
nated. This was followed by a SNR thresholding. Fur-
thermore, a singular value decompostion as proposed in
[24]was performed to reduce the computational cost of
reconstructing a three dimensional image. With weigths
computed from background measurements, the random-
ized singular value decomposition trimmed the system
matrix to 5000 rows.

However, it is important to note that these conven-
tional pre-processing steps are tailored to full-frame data.
Thus, they may encounter limitations when applied to
dynamic cases, where the dynamics requires a division
of the data into sub-frames. In order to realize this, the
raw data first have to be transformed into the time do-
main with an inverse Fourier transform. Only then the
frame-sized problems can be split into smaller subprob-
lems and are consequently solved in time domain. To
this end, access to the original raw-data is crucial for the
solution of reconstruction problems with fast dynamics.
If only pre-processed data are provided, one is restricted
to decompositions, where the time intervalls Ii correlate
to individual frames.

When working with simulated data, most of the
pre-processing steps are not necessary. Due to the
2D-Lissajous excitation, the system matrix is naturally
smaller compared to the system matrix of real data.
Therefore, pre-processing steps to reduce computational
work are not critical and some steps e.g. SNR threshold-
ing not applicable to simulated data.

IV. Results and Discussions

This section is dedicated to the numerical evaluation of
the RESESOP-Kaczmarz method on both simulated and
real dynamic MPI data. In particular, we investigate the
influence of critical parameters of our algorithm on the
result.

All experiments are conducted with 3D data, but for
clarity, each result is shown with a 2D slice. In each exper-
iment, the same frame and slice are depicted, ensuring a
comparable view across all scenarios.

The runtime of the RESESOP-Kaczmarz algorithm
is highly dependent on the chosen parameters. In this
study, we primarily consider 30 subproblems per itera-
tion, leading to a 2.3 times longer computation time per
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Algorithm (speed) PSNR NRMSE SSIM

reg. Kaczmarz (44 fpr) 22.0459 0.0892 0.8398
RESESOP-K. (44 fpr) 23.1104 0.0827 0.8904
reg. Kaczmarz (7 fpr) 20.3286 0.0934 0.7346
RESESOP-K. (7 fpr) 21.1896 0.0904 0.8266

Table 1: Comparison of reconstructions using regularized
Kaczmarz and RESESOP-Kaczmarz of frame four from noisy
simulated data with two different rotation speeds.

iteration compared to the regularized Kaczmarz method.
However, when using only one subproblem (i.e., solving
the problem with RESESOP), the computation time is
reduced to 0.2 times that of the regularized Kaczmarz
algorithm.

IV.I. Simulated Data

We first present reconstruction results from simulated
noisy data, cf. Section III.I, with two different rotation
speeds - a very fast scenario of seven fpr as well as the sce-
nario of 44 fpr. Regarding the coupling of time scales, we
consider here each frame as one subproblem, i.e. we are
choosing the least intrusive version in the MPI pipeline.

To illustrate the motion compensation properties of
the RESESOP-Kaczmarz method, we compare the re-
sults with those generated by the regularized Kaczmarz-
algorithm which is the most commonly used algorithm
within MPI. Since averaging data is not recommendable
for dynamic data, all reconstructions with regularized
Kaczmarz use one frame of data. The method is stopped
after 100 iterations. Furthermore, at each iteration non-
negativity of the approximated solution is enforced. The
initial value was set to zero. The regularization param-
eter λ is optimized by performing reconstructions for
a wide range of parameters and choosing the one that
leads to the best result.

The reconstruction results are illustrated in Figure 4.
The first row depicts the ground truth at frame four for
both rotational velocities. The second row shows the
images reconstructed by regularized Kaczmarz. In both
dynamic scenarios significant artifacts are visible. Since
the algorithm cannot rely on averaging over multiple
frames, the noise in the data is not satisfactorily reduced,
resulting in artifacts throughout the entire field-of-view.
Furthermore, the circular shape of the object is blurred,
distorted and hence no more recognizable. As to be ex-
pected, this effect is worse the faster the motion. These
examples motivate again that the dynamic behaviour of
the concentration needs to be taken into account within
the reconstruction step.

The respective results of RESESOP-Kaczmarz are pre-
sented in the third row of Figure 4. In both dynamic
scenarios, the actual shape of the object is recognizable
in the reconstructions, i.e. the algorithm does indeed

(a) Ground truth (b) Ground truth

(c) Regularized Kaczmarz (d) Regularized Kaczmarz

(e) RESESOP-Kaczmarz (f) RESESOP-Kaczmarz

Figure 4: Dynamic Reconstructions of frame four from noisy
simulated data with two different rotation speeds. The left
column shows results for a rotation speed of 44 fpr, the right
column for seven fpr.

compensate for the motion. However, due to the strict
restriction to frame-sized subproblems, we can still ob-
serve some small distortions in case of the very fast mo-
tion. Also the location of the object is not correctly re-
constructed but depicted in the middle of the traveled
path during frame four and not in the beginning. How-
ever, we further note that in both dynamic cases, the
method is able to eliminate the artifacts caused by the
noise throughout the field of view.

These findings are supported by comparing the recon-
struction results in terms of Peak Signal-to-Noise Ratio
(PSNR), Normalized Root Mean Square Error (NRMSE),
and Structural Similarity Index Measure (SSIM). The cor-
responding values for both reconstruction methods and
for both slow and fast rotational velocities are provided in
Table 1. Reconstructions computed with the RESESOP-
Kaczmarz algorithm exhibit higher quality across all met-
rics, with the improvement being even more pronounced
in the fast rotation scenario.

Altogether, Figure 4 and Table 1 demonstrate the ad-
vantage of applying RESESOP-Kaczmarz to dynamic MPI
problems. Further insights regarding the performance
of both algorithms are provided in Figure 5. The plots
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(a) Normalized root mean squared error (NRMSE)
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(b) Structural similarity index measure (SSIM)

Figure 5: Comparison of NRMSE and SSIM for reconstruction
with regularized Kaczmarz (blue dashed line) and RESESOP-
Kaczmarz (orange solid line) in dependence on the rotational
speed of the phantom.

in this figure compare the NRMSE and the SSIM for
images reconstructed using the regularized Kaczmarz
and RESESOP-Kaczmarz algorithms across different ro-
tational speeds of the phantom. The speed is quantified
by fpr, i.e. the smaller the value the faster the motion. Re-
garding the NRMSE, Figure 5a shows that the proposed
RESESOP-Kaczmarz algorithm consistently provides bet-
ter reconstruction results at all motion speeds. The SSIM
further assesses the interpretability of these reconstruc-
tions, see Figure 5b. Especially for very fast motion, the
RESESOP-Kaczmarz algorithm produces reconstructions
of significantly higher quality than the regularized Kacz-
marz algorithm. With decreasing speed, the SSIM val-
ues then approach each other, however, in average, the
RESESOP-Kaczmarz algorithm continues to provide bet-
ter results with respect to the SSIM.

Norm 15% Noise RegKacz

ζ ·10−1

ζ ·100

ζ ·101

ζ ·105

Figure 6: Reconstructed dynamic images with RESESOP-
Kaczmarz for different estimates of the total inexactness levels
ζi . Column 1: computed as distance of two frames via eu-
clidean norm, Column 2 : as in Column 1 with 15 % added
noise , Column 3: computed as MSE from regularized Kacz-
marz reconstructions. Each row corresponds to one additional
scaling factor.

IV.II. Parameters for
RESESOP-Kaczmarz

In this section, we want to study the robustness of the
RESESOP-Kaczmarz algorithm regarding estimates of
the total inexactness levels ζi , number of iterations and
size of subproblems. All experiments in this subsection
have been conducted with simulated data for the fast
rotating object with ten percent of added noise. The
reconstruction in Figure 4 (f) was obtained by determin-
ing ζi as described in Section II.III.1 with the Euclidean
norm and by performing ten full RESESOP-Kaczmarz it-
erations while the size of all subproblems corresponds
to one full frame.

To test stability regarding the estimates of the inexact-
ness levels, we performed the reconstruction with scaled
versions of these inexactness levels (more precisely with
factors 10−1, 101 and 105 respectively) representing an
under-, respectively over-estimations. In addition, we
also considered testing robustness with respect to com-
putation errors in the uncertainty level estimation. Ac-
cordingly, we added normally distributed random num-
bers multiplied by 15% of the maximum uncertainty level
to the norm estimates ζi . Lastly, we further use the alter-
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Figure 7: NRMSE in dependence on the number of RESESOP-
Kaczmarz loops.

native approach based on prior reconstruction discussed
in Section II.III.1.

Figure 6 illustrates the influence of different inex-
actness levels on the reconstruction result of RESESOP-
Kaczmarz. Both the proposed norm estimation directly
from the measured data as well as the estimation from
prior static reconstructions with regularized Kaczmarz
result in images of similar quality (unless in the underes-
timated case, see first row, where the computation from
the data is beneficial). Nevertheless, an underestimation
of the inexactness levels leads to an increase in motion
artifacts, while the motion is well compensated for even
if largely overestimated levels are used. The algorithm is
also stable regarding (random) errors in the computed
inexactness levels, see column 2. Despite strong devia-
tions of overall 15%, the algorithm still provides a recon-
struction of comparable image quality as with the exact
values.

Next, we study how the reconstruction quality de-
velops in dependence on the number of iterations. As
was shown in [16], the algorithm converges monotone
as long as adequate search directions are chosen. This
is clearly visible in Figure 7 which shows the evolution
of the NRMSE of the RESESOP-Kaczmarz solution com-
pared to the ground truth with increasing number of
iterations. Furthermore, we observe that the error re-
duces rapidly during the first iteration and then flattens
out.

Lastly, we want to examine the influence of the size
of the subproblems. Depending on the speed of the mo-
tion, assuming the concentration to be static during a
complete Lissajous trajectory can be too much simpli-
fied. Indeed, Figure 4 shows that under this assumption
in the very fast scenario, the reconstructed object is not
correctly located. This can be improved by considering
subproblems of smaller size, see Figure 8.

Choosing the sizes of the subproblems as a quarter of
a frame or smaller improves the reconstructed location

(a) Frame (b) 1
2 -frame (c) 1

4 -frame

(d) 1
8 -frame (e) 1

16 -frame (f) 1
32 -frame

Figure 8: Reconstructed dynamic images from noisy simulated
data in the fast scenario where different sizes of subproblems
are considered within the RESESOP-Kaczmarz algorithm.

of the object, see e.g. Figure 8c. However, choosing the
size too small can reintroduce a low amount of noise in
the reconstruction, see Figures 8e and 8f. Thus, in case
of very fast motion, one has to balance motion compen-
sation and noise reduction when choosing appropriate
sizes of subproblems.

IV.III. Real Data

In this section we evaluate the performance of RESESOP-
Kaczmarz on the real data introduced in Section III.II.

Figure 9 depicts reconstructions of four consecutive
frames of real data. For both the fullframe and subframe
scenarios, the pre-processing steps described in Section
III.III were applied. The left column shows images com-
puted with RESESOP-Kaczmarz using frame-sized sub-
problems. From the reconstructed images, we can clearly
deduce the temporal evolution of the object, namely the
rotation of the glass capillary. Also its spatial location per
time step is overall well captured and the noise well sup-
pressed. However, examining frames one, two and four
the circular shape of the reconstructed glass capillary is
slightly distorted due to the fast motion.

The right column of Figure 9 shows the respective
reconstruction results using 1

4 -frames as subproblems.
Compared to the frame-wise case, they portray the ob-
ject with a more constant round shape but are also more
affected by noise. This illustrates again the trade-off be-
tween noise reduction and motion compensation. In
a future step, it would be interesting to study whether
algorithms (or reconstructions) for different subproblem
sizes could be merged in order to combine the good mo-
tion compensation property of small subproblems with
the better noise reduction of large subproblems.

10.18416/ijmpi.2024.2411002 © 2024 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2024.2411002
https://dx.doi.org/10.18416/ijmpi.2024.2411002


International Journal on Magnetic Particle Imaging 11

Frame 1
4 -frame

Frame 1

Frame 2

Frame 3

Frame 4

Figure 9: Reconstructed dynamic image sequence with
RESESOP-Kaczmarz of four consecutive frames of real data
for a 7 Hz rotation with different sized subproblems. The first
subframe per frame is depicted. The original numeration of
the frames starts at frame 750.

V. Conclusion

In this article, we propose the RESESOP-Kaczmarz algo-
rithm to reconstruct dynamic objects from MPI data. The
method takes motion into account as a model inexact-
ness and, within the MPI framework, the only required
a priori information can be computed directly from the
measured data. The potential of the method was demon-
strated on real and simulated data. In particular, our
detailed experiments on simulated data show the robust-
ness of the method regarding its various parameters and
that it outperforms the regularized Kaczmarz algorithm,
a common solver in MPI based on a stationary assump-
tion on the object. Since the method further allows to
consider subproblems smaller than one complete frame,
it is suitable for a variety of dynamic MPI problems, in-
cluding scenarios with rapid particle movements.
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